happy machine learning(Second One)
发现机器学习就根本停不下来
今天来用RNN算法来爽爽僵尸网络宿主预测
首先我们下载好数据,然后打开我们可爱的熊猫
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from subprocess import check_output
df = pd.read_csv('F:\\machine_learning\\network.csv')
df.head(2)
print(df.head())

下面继续处理数据:
按每天的数据包总量来分
df['date']= pd.to_datetime(df['date']) df = df.groupby(['date','l_ipn'],as_index=False).sum() df['yday'] = df['date'].dt.dayofyear df['wday'] = df['date'].dt.dayofweek
对每个ip进行分类:
ip0 = df[df['l_ipn']==0] max0 = np.max(ip0['f']) ip1 = df[df['l_ipn']==1] max1 = np.max(ip1['f']) ip2 = df[df['l_ipn']==2] max2 = np.max(ip2['f']) ip3 = df[df['l_ipn']==3] max3 = np.max(ip3['f']) ip4 = df[df['l_ipn']==4] max4 = np.max(ip4['f']) ip5 = df[df['l_ipn']==5] max5 = np.max(ip5['f']) ip6 = df[df['l_ipn']==6] max6 = np.max(ip6['f']) ip7 = df[df['l_ipn']==7] max7 = np.max(ip7['f']) ip8 = df[df['l_ipn']==8] max8 = np.max(ip8['f']) ip9 = df[df['l_ipn']==9] max9 = np.max(ip9['f']) ip0.head(2)
然后我们输出一下ip0的头

很棒,我们已经成功按ip分类了
然后我们按每年的数据包总量来对每个ip进行图形化计数
首先举个例子:
count, division = np.histogram(ip0['f'],bins=10) division
他会输出这些
array([ 68., 810., 1552., 2294., 3036., 3778., 4520., 5262.,
6004., 6746., 7488.])
然后我们开始对每个ip下手
f,axarray = plt.subplots(5,2,figsize=(15,20))
count, division = np.histogram(ip0['f'],bins=10)
g = sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[0,0])
axarray[0,0].set_title("Local IP 0 Flow")
count, division = np.histogram(ip1['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[0,1])
axarray[0,1].set_title("Local IP 1 Flow")
count, division = np.histogram(ip2['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[1,0])
axarray[1,0].set_title("Local IP 2 Flow")
count, division = np.histogram(ip3['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[1,1])
axarray[1,1].set_title("Local IP 3 Flow")
count, division = np.histogram(ip4['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[2,0])
axarray[2,1].set_title("Local IP 4 Flow")
count, division = np.histogram(ip5['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[2,1])
axarray[2,1].set_title("Local IP 5 Flow")
count, division = np.histogram(ip6['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[3,0])
axarray[3,0].set_title("Local IP 6 Flow")
count, division = np.histogram(ip7['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[3,1])
axarray[3,1].set_title("Local IP 7 Flow")
count, division = np.histogram(ip8['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[4,0])
axarray[4,0].set_title("Local IP 8 Flow")
count, division = np.histogram(ip9['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[4,1])
axarray[4,1].set_title("Local IP 9 Flow")

happy machine learning(Second One)的更多相关文章
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【Machine Learning】Python开发工具:Anaconda+Sublime
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...
- 【Machine Learning】机器学习及其基础概念简介
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【Machine Learning】决策树案例:基于python的商品购买能力预测系统
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- [Machine Learning] Active Learning
1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi ...
- [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...
- machine learning基础与实践系列
由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的 ...
- matlab基础教程——根据Andrew Ng的machine learning整理
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一 ...
- Machine Learning
Recently, I am studying Maching Learning which is our course. My English is not good but this course ...
随机推荐
- 机器学习: 基于MRF和CNN的图像合成
前面我们介绍了基于卷积神经网络的图像风格迁移,利用一张content image 和 style image,可以让最终的图像既保留content image的基本结构,又能显示一定的style im ...
- 自由WiFi软体,你也太简单了
自由WiFi市场热点,自然不用多说.支付宝钱包计划实现全民免费WiFi,360.百度.金山.小米都在着手WiFi产品. 只是.这些免费WiFi或者实现WiFi的硬件或软件.都是争夺新的市场入口,推广产 ...
- C++第11周(春)项目4 - 类族的设计
课程首页在:http://blog.csdn.net/sxhelijian/article/details/11890759,内有完整教学方案及资源链接 [项目4 - 类族的设计]按下面的提示,由基类 ...
- P和P1指向了O和O1两个变量(对象)的地址, 而不是O和O1的内容(对象的实际地址)——充分证明@是取变量(对象)的地址,而不是变量里面的内容,够清楚!
如图,为什么这样取出来的p,p1的值不一样呢? 165232328群友庾伟洪告诉我: P和P1指向了O和O1两个变量(对象)的地址, 而不是O和O1的内容(对象的实际地址) ,你想P指向真正的对 ...
- WinForm控件与WPF控件的交互
原文:WinForm控件与WPF控件的交互 这个问题其实也可以理解为:怎样在WPF/XAML中使用Winform中的控件(如PictureBox)?首先看看XAML代码:(注意下面加粗的部分)< ...
- python 教程 第二章、 类型
第二章. 类型 常量 5,1.23,9.25e-3,’This is a string’,”It’s a string!” 1) 数 整数:2 长整数: 浮点数:3.23,52.3E-4 复数:-5+ ...
- linux_无秘登录问题(不生效)
1 . 登录1,执行命令 ssh-keygen -t rsa 之后一路回 车,查看刚生成的无密码钥对: cd .ssh 后 执行 ll 2 .把 id_rsa.pub 追加到授权的 key 里面去. ...
- [WPF]获取鼠标指针下的元素
原文:[WPF]获取鼠标指针下的元素 [WPF]获取鼠标指针下的元素 周银辉 以前写过一些GetElementUnderMouse之类的函数,要用到坐标换算而显得有些麻烦(特别是当元素有XXXTr ...
- Form submit
方法1:使用form onsubmit标签 return XXX()方法 <!--onsubmit--> <form id="formid" name=" ...
- XF 键盘类型设置
键盘类型: default Chat-输入短信或表情 Email Numeric Telephone Url-输入网址和文件路径 其他额外选项: CapitalizeSentence SpellChe ...