happy machine learning(Second One)
发现机器学习就根本停不下来
今天来用RNN算法来爽爽僵尸网络宿主预测
首先我们下载好数据,然后打开我们可爱的熊猫
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from subprocess import check_output
df = pd.read_csv('F:\\machine_learning\\network.csv')
df.head(2)
print(df.head())

下面继续处理数据:
按每天的数据包总量来分
df['date']= pd.to_datetime(df['date']) df = df.groupby(['date','l_ipn'],as_index=False).sum() df['yday'] = df['date'].dt.dayofyear df['wday'] = df['date'].dt.dayofweek
对每个ip进行分类:
ip0 = df[df['l_ipn']==0] max0 = np.max(ip0['f']) ip1 = df[df['l_ipn']==1] max1 = np.max(ip1['f']) ip2 = df[df['l_ipn']==2] max2 = np.max(ip2['f']) ip3 = df[df['l_ipn']==3] max3 = np.max(ip3['f']) ip4 = df[df['l_ipn']==4] max4 = np.max(ip4['f']) ip5 = df[df['l_ipn']==5] max5 = np.max(ip5['f']) ip6 = df[df['l_ipn']==6] max6 = np.max(ip6['f']) ip7 = df[df['l_ipn']==7] max7 = np.max(ip7['f']) ip8 = df[df['l_ipn']==8] max8 = np.max(ip8['f']) ip9 = df[df['l_ipn']==9] max9 = np.max(ip9['f']) ip0.head(2)
然后我们输出一下ip0的头

很棒,我们已经成功按ip分类了
然后我们按每年的数据包总量来对每个ip进行图形化计数
首先举个例子:
count, division = np.histogram(ip0['f'],bins=10) division
他会输出这些
array([ 68., 810., 1552., 2294., 3036., 3778., 4520., 5262.,
6004., 6746., 7488.])
然后我们开始对每个ip下手
f,axarray = plt.subplots(5,2,figsize=(15,20))
count, division = np.histogram(ip0['f'],bins=10)
g = sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[0,0])
axarray[0,0].set_title("Local IP 0 Flow")
count, division = np.histogram(ip1['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[0,1])
axarray[0,1].set_title("Local IP 1 Flow")
count, division = np.histogram(ip2['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[1,0])
axarray[1,0].set_title("Local IP 2 Flow")
count, division = np.histogram(ip3['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[1,1])
axarray[1,1].set_title("Local IP 3 Flow")
count, division = np.histogram(ip4['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[2,0])
axarray[2,1].set_title("Local IP 4 Flow")
count, division = np.histogram(ip5['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[2,1])
axarray[2,1].set_title("Local IP 5 Flow")
count, division = np.histogram(ip6['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[3,0])
axarray[3,0].set_title("Local IP 6 Flow")
count, division = np.histogram(ip7['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[3,1])
axarray[3,1].set_title("Local IP 7 Flow")
count, division = np.histogram(ip8['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[4,0])
axarray[4,0].set_title("Local IP 8 Flow")
count, division = np.histogram(ip9['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[4,1])
axarray[4,1].set_title("Local IP 9 Flow")

happy machine learning(Second One)的更多相关文章
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【Machine Learning】Python开发工具:Anaconda+Sublime
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...
- 【Machine Learning】机器学习及其基础概念简介
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【Machine Learning】决策树案例:基于python的商品购买能力预测系统
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- [Machine Learning] Active Learning
1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi ...
- [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...
- machine learning基础与实践系列
由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的 ...
- matlab基础教程——根据Andrew Ng的machine learning整理
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一 ...
- Machine Learning
Recently, I am studying Maching Learning which is our course. My English is not good but this course ...
随机推荐
- python 和为S的连续正数序列
题目描述: 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数).没多久, ...
- AI2XAML's Bug
原文:AI2XAML's Bug My picture is like this: I use Adobe Illustator CS to draw the outline of that, I s ...
- thread、Task、async & await
学习 Jesse 的文章 async & await 的前世今生(Updated) 而来 Thread是最开始使用的多线程.new一个Thread对象,将方法传进去.手动Start() 还可以 ...
- MFC 窗口分割与通信
一.关于CSplitterWnd类我们在使用CuteFtp或者NetAnt等工具的时候,一般都会被其复杂的界面所吸引,在这些界面中窗口被分割为若干的区域,真正做到了窗口的任意分割. 那么我们自己如何创 ...
- 安德鲁斯Launcher得到的装在手机的应用程序列表
Launcher最基本的是让所有的应用程序和入口图标的列表.有两种方法来获得,一般: PackageInfo ResolveInfo 执行获取全部APP的Launcher而且同意进行点击事件,进入到应 ...
- Linux性能测试 strace命令
1 功能说明 strace 命令是一种强大的工具 , 能够显示任何由用户空间程式发出的系统调用 . strace 显示这些调用的参数并返回符号形式的值 . strace 从内核接收信息 , ...
- matlab 矢量化编程(三) —— 软阈值函数
dj,k^=⎧⎩⎨⎪⎪dj,k−λ,dj,k≥λ0,otherwisedj,k+λ,dj,k≤−λ function y = soft(x, T) y = (x - abs(T) > 0) .* ...
- springboot 集成单元测试
官网参考地址 1. 添加依赖 <!-- 测试 --> <dependency> <groupId>org.springframework.boot</grou ...
- [Android] 环境优化配置Android Studio发展NDK
======================================================== 作者:qiujuer 博客:blog.csdn.net/qiujuer 站点:www. ...
- XF 标签页面
using System; using Xamarin.Forms; using Xamarin.Forms.Xaml; [assembly: XamlCompilation (XamlCompila ...