发现机器学习就根本停不下来

今天来用RNN算法来爽爽僵尸网络宿主预测

首先我们下载好数据,然后打开我们可爱的熊猫

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from subprocess import check_output

df = pd.read_csv('F:\\machine_learning\\network.csv')
df.head(2)
print(df.head())

下面继续处理数据:

按每天的数据包总量来分

df['date']= pd.to_datetime(df['date'])
df = df.groupby(['date','l_ipn'],as_index=False).sum()
df['yday'] = df['date'].dt.dayofyear
df['wday'] = df['date'].dt.dayofweek

对每个ip进行分类:

ip0 = df[df['l_ipn']==0]
max0 = np.max(ip0['f'])
ip1 = df[df['l_ipn']==1]
max1 = np.max(ip1['f'])
ip2 = df[df['l_ipn']==2]
max2 = np.max(ip2['f'])
ip3 = df[df['l_ipn']==3]
max3 = np.max(ip3['f'])
ip4 = df[df['l_ipn']==4]
max4 = np.max(ip4['f'])
ip5 = df[df['l_ipn']==5]
max5 = np.max(ip5['f'])
ip6 = df[df['l_ipn']==6]
max6 = np.max(ip6['f'])
ip7 = df[df['l_ipn']==7]
max7 = np.max(ip7['f'])
ip8 = df[df['l_ipn']==8]
max8 = np.max(ip8['f'])
ip9 = df[df['l_ipn']==9]
max9 = np.max(ip9['f'])
ip0.head(2)

然后我们输出一下ip0的头

很棒,我们已经成功按ip分类了

然后我们按每年的数据包总量来对每个ip进行图形化计数

首先举个例子:

count, division = np.histogram(ip0['f'],bins=10)
division

他会输出这些

array([   68.,   810.,  1552.,  2294.,  3036.,  3778.,  4520.,  5262.,
        6004.,  6746.,  7488.])

然后我们开始对每个ip下手

f,axarray = plt.subplots(5,2,figsize=(15,20))
count, division = np.histogram(ip0['f'],bins=10)
g = sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[0,0])
axarray[0,0].set_title("Local IP 0 Flow")

count, division = np.histogram(ip1['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[0,1])
axarray[0,1].set_title("Local IP 1 Flow")

count, division = np.histogram(ip2['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[1,0])
axarray[1,0].set_title("Local IP 2 Flow")

count, division = np.histogram(ip3['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[1,1])
axarray[1,1].set_title("Local IP 3 Flow")

count, division = np.histogram(ip4['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[2,0])
axarray[2,1].set_title("Local IP 4 Flow")

count, division = np.histogram(ip5['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[2,1])
axarray[2,1].set_title("Local IP 5 Flow")

count, division = np.histogram(ip6['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[3,0])
axarray[3,0].set_title("Local IP 6 Flow")

count, division = np.histogram(ip7['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[3,1])
axarray[3,1].set_title("Local IP 7 Flow")

count, division = np.histogram(ip8['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[4,0])
axarray[4,0].set_title("Local IP 8 Flow")

count, division = np.histogram(ip9['f'],bins=10)
sns.barplot(x=division[0:len(division)-1],y=count,ax=axarray[4,1])
axarray[4,1].set_title("Local IP 9 Flow")

happy machine learning(Second One)的更多相关文章

  1. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  2. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  3. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  4. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  5. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  6. [Machine Learning] Active Learning

    1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi ...

  7. [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...

  8. machine learning基础与实践系列

    由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的 ...

  9. matlab基础教程——根据Andrew Ng的machine learning整理

    matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一 ...

  10. Machine Learning

    Recently, I am studying Maching Learning which is our course. My English is not good but this course ...

随机推荐

  1. jQuery立即调用表达式

    http://www.imooc.com/code/3247 立即调用表达式 任何库与框架设计的第一个要点就是解决命名空间与变量污染的问题.jQuery就是利用了JavaScript函数作用域的特性, ...

  2. node lesson4--eventproxy不懂

    var express = require('express'); var superagent = require('superagent'); var cheerio = require('che ...

  3. CMake生成OpenCV解决方案&&编译OpenCV源码

    生成OpenCV工程需要用到CMake,所以第一步需要下载CMake软件,下载链接:CMake下载 目前最新的版本是3.7.1,这里选择下载Platform下的Windows win32-x86 ZI ...

  4. Java transient关键字【转】

    转自:http://www.blogjava.net/fhtdy2004/archive/2009/06/20/286112.htmlVolatile修饰的成员变量在每次被线程访问时,都强迫从主内存中 ...

  5. 机器学习、深度学习实战细节(batch norm、relu、dropout 等的相对顺序)

    cost function,一般得到的是一个 scalar-value,标量值: 执行 SGD 时,是最终的 cost function 获得的 scalar-value,关于模型的参数得到的: 1. ...

  6. Openstack+Kubernetes+Docker微服务实践

    Openstack+Kubernetes+Docker微服务实践 .....   Openstack+Kubernetes+Docker微服务实践之路--选型 posted @ 2016-11-15 ...

  7. WPF中的菜单模板

    原文:WPF中的菜单模板 资源字典代码如下: <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xa ...

  8. WinForm导出文件

    1 using System;  2 using System.Collections.Generic;  3 using System.Linq;  4 using System.Text;  5 ...

  9. OpenGL(六) gluLookAt和gluPerspective函数解析

    在调用gluLookAt和gluPerspective函数之前一般要先调用一下glLoadIdentity函数,先说一下这个函数是做什么的. glLoadIdentity glLoadIdentity ...

  10. AngularJS 计时器

    <div ng-controller="MyController"> <!--显示$scope.clock的now属性--> <h1>hello ...