示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。 从网上找的一段代码(我由java改为了C++版本),原作者言简意赅,讲解的很清楚。我一般算法题都会自己看了思路再写一遍,但这个算法代码真的很简单,思想却非常棒,所以不再自己写一遍了。
class Solution {
public:
int lengthOfLIS(int* nums) {
/**
dp[i]: 所有长度为i+1的递增子序列中, 最小的那个序列尾数.
由定义知dp数组必然是一个递增数组, 可以用 maxL 来表示最长递增子序列的长度.
对数组进行迭代, 依次判断每个数num将其插入dp数组相应的位置:
1. num > dp[maxL], 表示num比所有已知递增序列的尾数都大, 将num添加入dp
数组尾部, 并将最长递增序列长度maxL加1
2. dp[i-1] < num <= dp[i], 只更新相应的dp[i]
**/
int maxL = ;
int n = sizeof(nums) / sizeof(int);
int* dp = new int[n+];
for (int i = ; i < n; i++) {
int num = nums[i];
// 二分法查找, 也可以调用库函数如binary_search
int low = , high = maxL;
while (low < high) {
int mid = (low + high) / ;
if (dp[mid] < num)
low = mid + ;
else
high = mid;
}
dp[low] = num;
if (low == maxL)
maxL++;
}
return maxL;
}
};

最长上升子序列(LIS: Longest Increasing Subsequence)的更多相关文章

  1. 最长上升子序列 LIS(Longest Increasing Subsequence)

    引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...

  2. 最长递增子序列 (LIS) Longest Increasing Subsequence

    问题描述: 有一个长为n的数列a0, a1,..., an-1.请求出这个序列中最长的上升子序列.请求出这个序列中最长的上升子序列. 上升子序列:对于任意i<j都满足ai<aj的子序列. ...

  3. 最长上升子序列(Longest increasing subsequence)

    问题描述        对于一串数A={a1a2a3…an},它的子序列为S={s1s2s3…sn},满足{s1<s2<s3<…<sm}.求A的最长子序列的长度. 动态规划法 ...

  4. LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)

    题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...

  5. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  6. C#LeetCode刷题之#594-最长和谐子序列​​​​​​​​​​​​​​(Longest Harmonious Subsequence)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3800 访问. 和谐数组是指一个数组里元素的最大值和最小值之间的差 ...

  7. About LIS(Longest Increasing Subsequence)

    今天528给讲了基础的DP,其中第一道例题就是最长不下降子序列——LIS. 题目简述:给出N个数,求最长不下降子序列的长度. 数据范围:30% N<=1000 ; 100% N<=1000 ...

  8. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  9. 动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)

    分析: 完整代码: // 最长公共子序列 #include <stdio.h> #include <algorithm> using namespace std; ; char ...

随机推荐

  1. JVM-0-JVM知识体系

     

  2. 安装pymssql

    直接安装失败 https://www.lfd.uci.edu/~gohlke/pythonlibs/#pymssql 去下载对应的 pymssql   whl版本 之后 pip install whe ...

  3. qt用于图片显示的窗口

     用于图片显示的窗口 国产化  

  4. CSP2019 树上的数 题解

    题面 这是一道典型的部分分启发正解的题. 所以我们先来看两个部分分. Part 1 菊花图 这应该是除了暴力以外最好想的一档部分分了. 如上图(节点上的数字已省略),如果我们依次删去边(2)(1)(3 ...

  5. Tomcat 设置JVM内存大小

    我的服务器的配置: # OS specific support.  $var _must_ be set to either true or false. JAVA_OPTS="-Xms10 ...

  6. php+laravel依赖注入浅析

    laravel容器包含控制反转和依赖注入,使用起来就是,先把对象bind好,需要时可以直接使用make来取就好. 通常我们的调用如下. $config = $container->make('c ...

  7. Python extend函数解读

    num = [1,2] print('将1迭代2次') num.extend([1]*2) print(num) print('将2迭代3次') num.extend([2] * 3) print(n ...

  8. CRF 详细推导、验证实例

    逐帧softmax CRF主要用于序列标注问题,可以简单理解为是给序列中的每一帧都进行分类,既然是分类,很自然想到将这个序列用CNN或者RNN进行编码后,接一个全连接层用softmax激活,如下图所示 ...

  9. asp.net core web api 生成 swagger 文档

    asp.net core web api 生成 swagger 文档 Intro 在前后端分离的开发模式下,文档就显得比较重要,哪个接口要传哪些参数,如果一两个接口还好,口头上直接沟通好就可以了,如果 ...

  10. 如何真正实现由文档驱动的API设计?

    前言 本文主要介绍了一种新的开发思路:通过反转开发顺序,直接从API文档中阅读代码.作者认为通过这种开发方式,你可以更清楚地知道文档表达出什么以及它应该如何实现. 如果单从API文档出发,由于信息量不 ...