\(\bf Description\)

一个 \(0\) 到 \(n-1\) 的随机数生成器,生成 \(i\) 的概率是 \(A_i/S\) ,其中 \(S=\sum_{i=0}^{n-1} A_i\) ,请你求出每个数出现次数 \(\geq B_i\) 的期望次数。

\(\bf Solution\)

什么生成函数爆推的做法一点不会啊……

min-max容斥,考虑每个集合最早出现出现次数 \(\geq B_i\) 的数的期望时间,由期望可加性,就是所有数 \(<B_i\) 的局面的期望出现次数之和。

对于一个集合,下一步跳出它的概率 \(P=\frac{s}{S}\) ,\(s\) 是集合中的 \(A_i\) 之和。如果我们知道它出现的概率是 \(p\) ,那么它存在的期望次数就是 \(\frac{p}{P}\) 。

然后考虑一下 \(p\) 这个东西怎么算,假如现在已经生成的数的概率为 \(t_1\) 到 \(t_m\) ,个数是 \(x_1\) 到 \(x_m\) ,且设 \(X\) 为总和,那么可得(对这个柿子还是有点困惑啊……懂,但是自己推就是错的,很自闭)

\[p=X! \prod_{i=1}^{m} \left( \frac{t_i}{s} \right)^{x_i} \frac{1}{x_i!}
=\frac{X!}{s^X} \prod_{i=1}^m \frac{t_i^{x_i}}{x_i!}
\]

\(f_{i,j,k}\) 表示前 \(i\) 个数,\(X=j\) ,\(s=k\) 的贡献(所谓的贡献,是容斥之后的贡献,并且dp的时候只算 \(\prod\) 后面那一部分),然后背包一下就好了。

然后我开始写,然后我又算不清复杂度了……为什么最近老这样……

有个坑是当前这个数就算是0个,那也和不在集合是不一样的……然后我还把 \(\frac{1}{P}\) 弄成 \(P\) 了……

由于太懒了,所以就很不优雅地for到400了……

#include<bits/stdc++.h>
#define ll long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=404;
const int p=998244353;
int n,a[N],b[N];
ll f[N][N]; void read(int &x){ scanf("%d",&x); } ll qpow(ll sum,ll n){
ll ans=1;
for(;n;n>>=1,sum=sum*sum%p) if (n&1) ans=ans*sum%p;
return ans;
} ll mul[N],inv[N];
void init(){
mul[0]=1;
frl(i,1,N) mul[i]=mul[i-1]*i%p;
inv[N-1]=qpow(mul[N-1],p-2);
rf(i,N-2,0) inv[i]=inv[i+1]*(i+1)%p;
} void Add(ll &x,ll y){
x+=y;//x%=p;
if (x<0) x+=p;
if (x>=p) x-=p;
} int main(){
init();
read(n);
fr(i,1,n) read(a[i]),read(b[i]);
int S=0;
fr(i,1,n) S+=a[i];
//S=qpow(S,p-2);
f[0][0]=p-1;
fr(i,1,n)
rf(k,400,0)
fr(j,0,400)
frl(x,0,b[i])
if (f[j][k]) Add(f[j+x][k+a[i]],p-f[j][k]*qpow(a[i],x)%p*inv[x]%p);
ll ans=0;
fr(j,0,400)
fr(k,1,400)
Add(ans,mul[j]*f[j][k]%p*qpow(k,p-1-j)%p*qpow(k,p-2)%p*S%p);
cout<<ans<<endl;
return 0;
}

AtCoder Grand Contest 038E - Gachapon的更多相关文章

  1. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  2. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  3. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  4. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

  5. AtCoder Grand Contest 009

    AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...

  6. AtCoder Grand Contest 008

    AtCoder Grand Contest 008 A - Simple Calculator 翻译 有一个计算器,上面有一个显示按钮和两个其他的按钮.初始时,计算器上显示的数字是\(x\),现在想把 ...

  7. AtCoder Grand Contest 007

    AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...

  8. AtCoder Grand Contest 006

    AtCoder Grand Contest 006 吐槽 这套题要改个名字,叫神仙结论题大赛 A - Prefix and Suffix 翻译 给定两个串,求满足前缀是\(S\),后缀是\(T\),并 ...

  9. AtCoder Grand Contest 005

    AtCoder Grand Contest 005 A - STring 翻译 给定一个只包含\(ST\)的字符串,如果出现了连续的\(ST\),就把他删去,然后所有位置前移.问最后剩下的串长. 题解 ...

随机推荐

  1. 什么是回流(重排 reflow)?什么是重绘(repaint)?如何减少回流、重绘?

    什么是回流(重排 reflow)? 回流(重排 reflow):对DOM树进行渲染,只要修改DOM或修改元素的形状大小,就会触发reflow,reflow的时候,浏览器会使已渲染好受到影响的部分失效, ...

  2. 从单片机到操作系统⑦——深入了解FreeRTOS的延时机制

    >没研究过操作系统的源码都不算学过操作系统 # FreeRTOS 时间管理 时间管理包括两个方面:系统节拍以及任务延时管理. ## 系统节拍: 在前面的文章也讲得很多,想要系统正常运行,那么时钟 ...

  3. js时间查询补充

    先来看下JS中的日期操作: var myDate = new Date(); myDate.getYear(); //获取当前年份(2位) myDate.getFullYear(); //获取完整的年 ...

  4. DJango配置mysql数据库以及数据库迁移

    DJango配置mysql数据库以及数据库迁移 一.Django 配置MySQL数据库 在settings.py中配置 import pymysql # 配置MySQL pymysql.install ...

  5. Ubuntu18.04 安装 OpenCV 4.1.1

    1. 安装依赖包 sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-confi ...

  6. 通过反射对任意class类中方法赋值的方式

    import org.apache.commons.lang3.StringUtils;import org.slf4j.Logger;import org.slf4j.LoggerFactory;i ...

  7. (未完)XSS漏洞实战靶场笔记

    记录下自己写的XSS靶场的write up,也是学习了常见xss漏洞类型的实战场景

  8. Windows渗透测试中wmi的利用

    0x01 关于WMI WMI可以描述为一组管理Windows系统的方法和功能.我们可以把它当作API来与Windows系统进行相互交流.WMI在渗透测试中的价值在于它不需要下载和安装, 因为WMI是W ...

  9. Spring容器启动源码解析

    1. 前言 最近搭建的工程都是基于SpringBoot,简化配置的感觉真爽.但有个以前的项目还是用SpringMvc写的,看到满满的配置xml文件,却有一种想去深入了解的冲动.折腾了好几天,决心去写这 ...

  10. 01--Java语言概述与开发环境 最适合入门的Java教程

    Java 程序运行机制 编译型语言: 使用专门的编译器,针对特定平台(操作系统)将某种高级语言源代码一次性"翻 译"成可被该平台硬件执行的机器码(包括机器指令和操作数),并包装成该 ...