Luogu P3938 斐波那契

第一眼看到这题,想到的是LCA,于是开始想怎么建树,倒是想出了\(n^{2}\)算法,看了下数据范围,果断放弃

想了想这数据范围,大的有点不正常,这让我想起了当年被小凯支配的恐惧QAQ

看了大约\(\mathcal{10min}\)后找出规律:根节点减去一个最接近它的小于等于它的Fibonacci数列中的数,就是它的父亲节点

然后就很简单了,先把Fibonacci打表,然后二分查找(\(\mathfrak{STL}\)大法好)

最后注意一点:不要忘了开\(\tt{long long}\)

夸赞一句:这个题思路真奇妙

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
ll f[1000010],tot;
ll read(){
    ll k=0; char c=getchar();
    for(;c<'0'||c>'9';) c=getchar();
    for(;c>='0'&&c<='9';c=getchar())
      k=(k<<3)+(k<<1)+c-48;
    return k;
}
int main(){
    f[0]=f[1]=1;
    for(int i=2;f[i-1]<=1e12;i++){
        f[i]=f[i-1]+f[i-2];
        tot++;
    }
    int m=read();
    while(m--){
        ll x=read(),y=read();
        if(x==y){
            printf("%lld\n",x);  continue;
        }
        while(x!=y){
            if(x<y) swap(x,y);
            int pos=lower_bound(f+1,f+tot+1,x)-f-1;
            x-=f[pos];
        }
        if(x) printf("%lld\n",x);
        else printf("1");
    }
    return 0;
}

Luogu P3938 斐波那契的更多相关文章

  1. [luogu]P3938 斐波那契[数学]

    [luogu]P3938 斐波那契 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚 ...

  2. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  3. 2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】

    [题解在下面] 早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了.” 我:深以为然. (这是个伏笔) 据说hzoi的人还差两次考试[现在是一次了]就要重新分配机房,不 ...

  4. [Luogu P3986] 斐波那契数列 (逆元)

    题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...

  5. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  6. Luogu P1306 斐波那契公约数

    这道题其实是真的数学巨佬才撸的出来的题目了 但如果只知道结论但是不知道推导过程的我感觉证明无望 首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题 所以就暗示我们直接上矩阵了啦 但是如果直接搞 ...

  7. P3938 斐波那契

    思路 脑子还真的是好东西,自己太笨了 容易发现父亲节点和儿子节点的关系 儿子节点大于父亲节点 儿子节点和父亲节点之差为斐波那契数,且斐波那契数为小于儿子节点的最大的一个 1e12中有60左右的斐波那契 ...

  8. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  9. [LUOGU] P1962 斐波那契数列

    求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...

随机推荐

  1. 地理位置(navigation.geolocation)与本地存储(seessionStorage、localStorage)

    一.地理位置( geolocation ): navigator.geolocation对象: 1.单次请求: //navigator.geolocation.getCurrentPosition( ...

  2. TRANSFORM_TEX

    Shader "Custom/Exam1" { Properties { _MainTex ("Texture", 2D) = "white" ...

  3. MongoDb 创建用户以及其他版本造成的一些问题

    问题:require auth data to have schema version 3 but found 1 这是可以查看如下链接: http://stackoverflow.com/quest ...

  4. 反射记录点滴——Field

    反射记录点滴 1. 反射获取类的属性 Class.getDeclareFileld(String name) 返回一个Filed对象,该对象反映此Class对象所表示的类或接口的指定已声明字段. Cl ...

  5. java 程序从linux 上接收不可见字符

    近期在写一个简单的小java程序,希望在运行java 程序时,从shell 中接收参数,并且参数的内容为不可见字符. 开始时还觉得可以使用"\"之类的转义符来写,后来发现java程 ...

  6. HDU1087(树状数组求LIS)

    题是水题,学习一下用树状数组求LIS. 先离散化一下,注意去重:然后就把a[i]作为下标,dp[i]作为值,max作为维护的运算插进树状数组即可. 如果是上升子序列,询问(a[i] - 1):如果是不 ...

  7. 洛谷P4095||bzoj3163 [HEOI2013]Eden 的新背包问题

    https://www.luogu.org/problemnew/show/P4095 不太会.. 网上有神奇的做法: 第一种其实是暴力(复杂度3e8...)然而可以A.考虑多重背包,发现没有办法快速 ...

  8. 07.Javascript——入门高阶函数

    高阶函数英文叫Higher-order function..JavaScript的函数其实都指向某个变量.既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数 ...

  9. Notepad++ 安装 Zen Coding / Emmet 插件

    Zen Coding 插件 ============== 下载: Zen.Coding-Notepad++.v0.7.zip ==Installation== 1. Copy contents of ...

  10. lnmp.org + phpstorm + xdebug

    lnmp.org下载安装包安装之: lnmp是个集成安装包,就不用自己在配置lnmp环境 安装phpstorm,破解方法:注册服务器为http://idea.lanyus.com 就可以了 xdebu ...