传送门

果然\(dp\)题就没咱啥事儿了

设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值

如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1}\)

如果\(j\)出现过,我们考虑枚举\(j\)第一次出现的位置\(k\),设包含那个位置的长度为\(m\)的区间个数为\(c\),那么这里\(j\)的贡献就是\({w_j}^c\),前面没有\(j\),是\(f_{i-1,j-1}\)后面可能还有\(j\),是\(f_{i-k,j}\)

综上,转移为$$f_{i,j}=f_{i,j-1}+\sum_{k=1}^i {w_j}^c\times f_{i-1,j-1}\times f_{i-k,j}$$

然后边界的话,\(f_{0,j}=1\),而对于所有\(i<m\)的序列,这里贡献的就是区间个数,为\(f_{i,j}=j^i\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=405,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int p[N][N],f[N][N],c[N][N],a[N];
int n,m;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
fp(i,1,n){
a[i]=read(),p[i][0]=1;
fp(j,1,n)p[i][j]=mul(p[i][j-1],a[i]);
}
fp(i,0,n)f[0][i]=1;
fp(i,1,m-1)fp(j,1,n)f[i][j]=mul(f[i-1][j],j);
fp(i,m,n)fp(j,1,i-m+1)fp(k,0,m-1)++c[i][j+k];
fp(i,m,n)fp(j,1,n){
f[i][j]=f[i][j-1];
fp(k,1,i)f[i][j]=add(f[i][j],1ll*f[k-1][j-1]*f[i-k][j]%P*p[j][c[i][k]]%P);
}
printf("%d\n",f[n][n]);
return 0;
}

uoj#311. 【UNR #2】积劳成疾(期望dp)的更多相关文章

  1. UOJ.311.[UNR#2]积劳成疾(DP)

    UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...

  2. 【UOJ#311】【UNR #2】积劳成疾(动态规划)

    [UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...

  3. UOJ #311「UNR #2」积劳成疾

    需要锻炼$ DP$能力 UOJ #311 题意 等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列 定义其价值为所有长度为$ k$的连续子数列的最大值的乘积 给定$ n,k$求所有合法数列的 ...

  4. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  5. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  6. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  7. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  8. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  9. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  10. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

随机推荐

  1. flask的请求上下文源码解读

    一.flask请求上下文源码解读 通过上篇源码分析( ---Flask中的CBV和上下文管理--- ),我们知道了有请求发来的时候就执行了app(Flask的实例化对象)的__call__方法,而__ ...

  2. JAVA使用相对路径读取配置文件

    JAVA使用相对路径读取配置文件[align=center][/align][size=medium][/size]   在软件开发中经常遇到读取配置文件,以及文件定位问题.今天做个总结.   (一) ...

  3. 更新TP-LINK路由器的外网IP到花生壳动态IP解析

    ------------------------------------------------------------------------------- 以下内容可能还是存在问题,等之后有时间再 ...

  4. C# 计时器 以“天时分秒毫秒”形式动态增加显示

    参考:http://zhidao.baidu.com/link?url=j-jxQJenrO54BSKJ_IkXWbhdDqbVLUyyenjjSGs8G0xdisgBZ0EMhzyWgARSFct6 ...

  5. R语言快捷键

    一.控制台 功能  Windows & Linux   Mac 移动鼠标到控制台 Ctrl+2 Ctrl+2 移动到鼠标命令编辑 Ctrl+1 Ctrl+1 控制台清屏 Ctrl+L Comm ...

  6. Mac系统存储-其他存储无故增大

    解决办法:打开Finder:安全倾倒废纸篓就会减少很大一部分存储.

  7. Unity-2017.3官方实例教程Space-Shooter(二)

    由于初学Unity,写下此文作为笔记,文中难免会有疏漏,不当之处还望指正. Unity-2017.3官方实例教程Space-Shooter(一) 章节列表: 一.创建小行星Prefab 二.创建敌机和 ...

  8. ACM学习历程—BestCoder 2015百度之星资格赛1004 放盘子(策略 && 计算几何)

    Problem Description 小度熊喜欢恶作剧.今天他向来访者们提出一个恶俗的游戏.他和来访者们轮流往一个正多边形内放盘子.最后放盘子的是获胜者,会赢得失败者的一个吻.玩了两次以后,小度熊发 ...

  9. C# 线程的暂停和恢复的 实现

    我们可以通过ManualResetEvent类来实现. 声明, 初始化时不执行 private static ManualResetEvent _eventWorkList = new ManualR ...

  10. Spring读取加密属性文件处理--待整理

    引言:Spring框架俨然已经是目前Java WEB项目开发的一个宠儿,更有人将Spring, Struts,和Hibernage称之为Java WEB项目开发的3件利器.Spring的依赖.注入.A ...