题目



输入格式

第一行包含两个整数n, m,分别表示上下两个管道中球的数目。 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型。其中A表示浅色球,B表示深色球。 第三行为一个AB字符串,长度为m,表示下管道中的情形。

输出格式

仅包含一行,即为 Sigma(Ai^2) i从1到k 除以1024523的余数。

输入样例

2 1

AB

B

输出样例

5

提示

样例即为文中(图3)。共有两种不同的输出序列形式,序列BAB有1种产生方式,而序列BBA有2种产生方式,因此答案为5。

【大致数据规模】

约30%的数据满足 n, m ≤ 12;

约100%的数据满足n, m ≤ 500。

题解

一开始看题很是懵B

各种相同取法数量的平方之和= =

可以这样想,假如有两人各玩一次,其中一种取法个数为x,第一个人会从x种取法种选一种取,第二个人也从x个取法中选一个取,总共方案不就是\(x^2\)?

问题不就转化成了:两个人取球,取得相同结果的方案数

设\(f[i][j][k]\)表示取i个球,①号取了上边j个,②号取了上边k个,结果相同的方案数

转移就很简单了,看代码吧

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 505,maxm = 100005,INF = 1000000000,P = 1024523;
int f[2][maxn][maxn],n,m,N;
char L[maxn],R[maxn];
int main(){
scanf("%d%d%s%s",&n,&m,L + 1,R + 1); N = n + m;
for (int i = 1; i <= (n >> 1); i++) swap(L[i],L[n - i + 1]);
for (int i = 1; i <= (m >> 1); i++) swap(R[i],R[m - i + 1]);
f[0][0][0] = 1; int p = 0;
for (int i = 0; i < N; i++,p ^= 1)
for (int j = 0; j <= n && j <= i; j++)
for (int k = 0; k <= n && k <= i; k++){
int F = f[p][j][k];
if (L[j + 1] == L[k + 1])
f[p ^ 1][j + 1][k + 1] = (f[p ^ 1][j + 1][k + 1] + F) % P;
if (R[i - j + 1] == R[i - k + 1])
f[p ^ 1][j][k] = (f[p ^ 1][j][k] + F) % P;
if (L[j + 1] == R[i - k + 1])
f[p ^ 1][j + 1][k] = (f[p ^ 1][j + 1][k] + F) % P;
if (R[i - j + 1] == L[k + 1])
f[p ^ 1][j][k + 1] = (f[p ^ 1][j][k + 1] + F) % P;
f[p][j][k] = 0;
}
printf("%d\n",f[p][n][n]);
return 0;
}

BZOJ1566 [NOI2009]管道取珠 【dp】的更多相关文章

  1. bzoj1566: [NOI2009]管道取珠 DP

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...

  2. bzoj1566 [NOI2009]管道取珠——DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...

  3. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  4. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  5. [NOI2009]管道取珠 DP + 递推

    ---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...

  6. [bzoj1566][NOI2009]管道取珠

    来自FallDream的博客,未经允许,请勿转载,谢谢. n<=500 神题...... 发现这个平方可以看作两个序列相同的对数  然后就可以表示状态了. f[i][j][k]表示两个序列各选了 ...

  7. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  8. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

  9. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...

随机推荐

  1. js 数组方法大集合,各方法是否改变原有的数组详解

    不会改变原来数组的有: concat()---连接两个或更多的数组,并返回结果. every()---检测数组元素的每个元素是否都符合条件. some()---检测数组元素中是否有元素符合指定条件. ...

  2. 在 Java 8 中避免 Null 检查

    如何预防 Java 中著名的 NullPointerException 异常?这是每个 Java 初学者迟早会问到的关键问题之一.而且中级和高级程序员也在时时刻刻规避这个错误.其是迄今为止 Java ...

  3. oc数组遍历

    #import <Foundation/Foundation.h> //数组遍历(枚举)对集合中的元素依此不重复的进行遍历 int main(int argc, const char * ...

  4. HTML5中最看重的理念“语义化”相比HTML有什么区别?

    这里搜集整理了一些语义化标签方面的问题和解答,以供大家参考. 语义化这个概念应该说是伴着HTML5应运而生,那么什么是HTML5中所谓的语义化? 简单来说就是:描述内容的含义(meaning) 比如说 ...

  5. 抽象类&接口区别

    抽象类:1.可以有构造方法.   2.可以有抽象方法也可以有具体方法. 3.权限修饰符可以是private.默认.protected.public. 4.可以定义成员变量.   5.interface ...

  6. node 发送邮件demo (QQ邮箱)

    nodemailer是nodejs中的邮件发送模块,本文使用的版本为2.5.0 --下载模块 npm install nodemailer npm下载模块后,在项目中引入就可以使用: var node ...

  7. react与微信小程序

    由组员完成 原文链接 都说react和微信小程序很像,但是像在什么部分呢,待我稍作对比. 生命周期 1.React React的生命周期在16版本以前与之后发生了重大变化,原因在于引入的React F ...

  8. Python小项目之五子棋

    1.项目简介 在刚刚学习完python套接字的时候做的一个五子棋小游戏,可以在局域网内双人对战,也可以和电脑对战 2.实现思路 局域网对战 对于局域网功能来说,首先建立连接(tcp),然后每次下棋时将 ...

  9. python之质数

    质数(prime number)又称素数,有无限个 质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数. 示例: num=[]; i=2 for i in range(2,100): j= ...

  10. Python3爬取人人网(校内网)个人照片及朋友照片,并一键下载到本地~~~附源代码

    题记: 11月14日早晨8点,人人网发布公告,宣布人人公司将人人网社交平台业务相关资产以2000万美元的现金加4000万美元的股票对价出售予北京多牛传媒,自此,人人公司将专注于境内的二手车业务和在美国 ...