题目传送

推公式博客传送

推完式子就是去朴素地求就行了Orz

const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
int m, mu[maxn], vis[maxn], primes[maxn], tot;
ll dp[maxn];
vector<int> factor[maxn]; ll ksm(ll a, ll b) {
ll ret = 1;
for (; b; b >>= 1) {
if (b & 1) ret = ret * a % mod;
a = a * a % mod;
}
return ret;
} void pre(int n) {
rep(i, 1, n) {
for (int k = 1; k * i <= n; k++)
factor[k * i].push_back(i);
} mu[1] = 1;
rep(i, 2, n) {
if (!vis[i]) {
primes[tot++] = i;
mu[i] = mod - 1;
}
for (int j = 0; j < tot && primes[j] * i <= n; j++) {
vis[primes[j] * i] = 1;
if (i % primes[j] == 0) break;
mu[primes[j] * i] = mod - mu[i];
}
}
} ll calc(int x, int d) {
ll ret = 0;
for (int i : factor[x / d]) {
ret = (ret + (ll)mu[i] * (m / d / i) % mod) % mod;
}
return ret;
} void DP() {
dp[1] = 0;
rep(i, 2, m) {
ll k = m - m / i;
ll tmp = m;
for (auto j : factor[i]) {
if (j == i) continue;
tmp = (tmp + dp[j] * calc(i, j) % mod) % mod;
}
dp[i] = tmp * ksm(k, mod - 2) % mod;
}
} ll ANS(int m) {
ll ret = 0;
rep(i, 1, m) {
ret = (ret + dp[i] + 1) % mod;
}
return ksm(m, mod - 2) * ret % mod;
} int main() {
read(m);
pre(m);
DP();
writeln(ANS(m));
return 0;
}

Codeforces 1139D(推式子+dp)的更多相关文章

  1. Codeforces 1139D(期望dp)

    题意是模拟一个循环,一开始有一个空序列,之后每次循环: 1.从1到m中随机选出一个数字添加进去,每个数字被选的概率相同. 2.检查这个序列的gcd是否为1,如果为1则停止,若否则重复1操作直至gcd为 ...

  2. [NOI1999] 棋盘分割(推式子+dp)

    http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 156 ...

  3. [HAOI2007]分割矩阵 DP+推式子

    发现最近好少写博客啊(其实是各种摆去了) 更一点吧 这道题要求最小化均方差,其实凭直觉来说就是要使每个块分的比较均匀一点,但是单单想到想到这些还是不够的, 首先f[i][j][k][l][t]表示以( ...

  4. HZOJ 20190727 T2 单(树上dp+乱搞?+乱推式子?+dfs?)

    考试T2,考试时想到了40pts解法,即对于求b数组,随便瞎搞一下就oxxk,求a的话,很明显的高斯消元,但考试时不会打+没开double挂成10pts(我真sb),感觉考试策略还是不够成熟,而且感觉 ...

  5. LOJ 3399 -「2020-2021 集训队作业」Communication Network(推式子+组合意义+树形 DP)

    题面传送门 一道推式子题. 首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\) 这个东西没法直接处理,不过注意到有一个柿子 \( ...

  6. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  7. [Codeforces676B]Pyramid of Glasses(递推,DP)

    题目链接:http://codeforces.com/problemset/problem/676/B 递推,dp(i, j)表示第i层第j个杯子,从第一层开始向下倒,和数塔一样的题.每个杯子1个时间 ...

  8. Codeforces 678E 状压DP

    题意:有n位选手,已知n位选手之间两两获胜的概率,问主角(第一个选手)最终站在擂台上的概率是多少? 思路:一看数据范围肯定是状压DP,不过虽然是概率DP,但是需要倒着推:我们如果正着推式子的话,初始状 ...

  9. sequence——强行推式子+组合意义

    sequence 考虑长度<=x的方案数F(x),然后(F(x)-F(x-1))*x贡献到答案里 n平方的做法可以直接DP, 感觉有式子可言, 就推出式子:类似coat,每个长度为i的计算i次. ...

随机推荐

  1. 浅淡!important对CSS的重要性

    SS中的!important是一个非常重要的属性,有时候发挥着非常大的作用,52CSS.com这方面的知识并不是非常多,我们看下面的文章,对它作比较感观的了解. 前几天写一些CSS代码的时候又难为我了 ...

  2. android DHCP流程【转】

    本文转载自:http://blog.csdn.net/myvest/article/details/51483647 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   1 ...

  3. hihocoder#1050 : 树中的最长路(树中最长路算法 两次BFS找根节点求最长+BFS标记路径长度+bfs不容易超时,用dfs做TLE了)

    #1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...

  4. 配置Nginx四层负载均衡

    nginx 支持TCP转发和负载均衡的支持 实现下面的架构: 看配置: #user nobody; worker_processes 1; #error_log logs/error.log; #er ...

  5. 测试工程师面试题之:给你印象最深的Bug

    有人看到别人在侵淫面试技巧,什么<程序员面试宝典>,或者<面试测试工程师须知>等等,就会嗤之以鼻.他会觉得这不是“投机取巧”吗,最重要的还是踏实提高自己的能力. 非常同意这种看 ...

  6. codeforces 140B.New Year Cards 解题报告

    题目链接:http://codeforces.com/problemset/problem/140/B 题目意思:给出 Alexander 和他的 n 个朋友的 preference lists:数字 ...

  7. ibatis 优点,未完版

    iBatis是Apache的一个开源项目,一个O/R Mapping(???)解决方案,iBatis最大的特点就是小巧,上手很快,如果不需要太多复杂的功能,ibatis是能满足你得要求又足够灵活的最简 ...

  8. VC解析XML--使用CMarkup类解析XML

    经过今天尝试MFC解析XML串,也算有了不少收获,总结一下.         我是使用的CMarkup类对XML进行操作.                  CMarkup好象都是先从一个xml文件里 ...

  9. webpack 小demo

    1 安装node.js 2 安装cnpm 3 安装webpack cnpm install --save-dev webpack 对于大多数项目,我们建议本地安装.这可以使我们在引入破坏式变更的依赖时 ...

  10. json : json数据解析(一)

    在项目中经常用到json格式的数据转换与解析,先前写过一些小例子,现在整理下,以备后用和帮助后来者. 言归正传: 使用到的jar包 :json-lib-2.4-jdk15.jar,当然你也可以用自己版 ...