洛谷—— P3807 【模板】卢卡斯定理
https://www.luogu.org/problemnew/show/3807
题目背景
这是一道模板题。
题目描述
给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105)
求 C_{n+m}^{m}\ mod\ pCn+mm mod p
保证P为prime
C表示组合数。
一个测试点内包含多组数据。
输入输出格式
输入格式:
第一行一个整数T(T\le 10T≤10),表示数据组数
第二行开始共T行,每行三个数n m p,意义如上
输出格式:
共T行,每行一个整数表示答案。
输入输出样例
2
1 2 5
2 1 5
3
3
#include <cstdio> #define LL long long
inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N(1e5+);
LL fac[N]; inline LL Pow(LL a,int b,int p)
{
LL ret=;
for(; b; b>>=,a*=1ll*a,a%=p)
if(b&) ret*=1ll*a,ret%=p;
return ret;
} inline LL C(LL n,LL m,LL p)
{
if(n<m) return ;
return fac[n]%p*Pow(fac[m],p-,p)%p*Pow(fac[n-m],p-,p)%p;
} inline LL lus(LL n,LL m,LL p)
{
if(m==) return ;
return C(n%p,m%p,p)*lus(n/p,m/p,p)%p;
} int Presist()
{
int t; read(t); fac[]=;
for(int n,m,p; t--; )
{
read(n),read(m),read(p);
for(int i=; i<=n+m; ++i)
fac[i]=1ll*fac[i-]%p*i%p;
printf("%lld\n",lus(n+m,m,p));
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}
洛谷—— P3807 【模板】卢卡斯定理的更多相关文章
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- Linux远程传输命令scp
指令:scp在不同的linux主机间复制文件带有Security的文件copy,基于ssh登录. 有些linux发行版没有自带scp,因此需要安装scp# yum -y install openssh ...
- SQL Server ALwayson 正在解析
原因:把主库切换到辅助副本以后,集群全部出现正在解析的情况,数据库显示“恢复挂起” 过程:把服务器重启,原以为正在解析会恢复正常.结果失败. 解决方法:出现“正在解析”的情况跟故障转移群集有关,进故障 ...
- LeetCode(303)Range Sum Query - Immutable
题目 Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclus ...
- LeetCode(129) Sum Root to Leaf Numbers
题目 Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a num ...
- flask-博客文章
提交和显示博客文章 文章模型 class Post(db.Model): __tablename__ = 'posts' id = db.Column(db.Integer, primary_key= ...
- Apache ant 配置
ANT_HOME C:\Program Files(D)\apache-ant-1.10.1Path %ANT_HOME%/binant -v
- 光学字符识别OCR-4
经过第一部分,我们已经较好地提取了图像的文本特征,下面进行文字定位. 主要过程分两步: 1.邻近搜索,目的是圈出单行文字: 2.文本切割,目的是将单行文本切割为单字. ...
- git仓库删除所有提交历史记录
stackoverflow原问题地址:http://stackoverflow.com/questions/13716658/how-to-delete-all-commit-history-in-g ...
- SDOJ 3740 Graph
8.9 t3 [描述] 给你一个图,一共有 N 个点,2*N-2 条有向边. 边目录按两部分给出 1. 开始的 n-1 条边描述了一颗以 1 号点为根的生成树,即每个点都可以由 1 号点 到达. 2. ...
- Leetcode 424.替换后的最长重复字符
替换后的最长重复字符 给你一个仅由大写英文字母组成的字符串,你可以将任意位置上的字符替换成另外的字符,总共可最多替换 k 次.在执行上述操作后,找到包含重复字母的最长子串的长度. 注意:字符串长度 和 ...