【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT
题目描述
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
.png)
输入
输入只有一个正整数
输出
输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000
样例输入
3
题解
NTT
考虑第二类斯特林数的公式:
(第二类斯特林数的含义是把n个数分成m个非空集合的方案数,考虑容斥,如果不考虑集合的无序性,至少有i个空集的方案数为$C_m^i*(m-i)^n$,除以$m!$后容斥一下,故有此式)
然后答案就是:
很容易发现后面的$\sum$是一个卷积的形式,设$f(x)=\frac{(-1)^x}{x!},g(x)=\frac{\sum\limits_{i=0}^nx^i}{x!}$,那么答案为$\sum\limits_{j=0}^nh(j)=\sum\limits_{j=0}^nf*g(j)$。
使用NTT加速求解,时间复杂度为$O(n\log n)$。
注意当首项为1时,等比数列求和公式不能使用,需要特判。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 300010
using namespace std;
typedef long long ll;
const ll mod = 998244353;
ll fac[N] , p[N] , a[N] , b[N];
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void ntt(ll *a , int len , int flag)
{
int i , j , k;
for(i = k = 0 ; i < len ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = len >> 1 ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= len ; k <<= 1)
{
ll wn = pow(3 , (mod - 1) / k);
if(flag == -1) wn = pow(wn , mod - 2);
for(i = 0 ; i < len ; i += k)
{
ll w = 1 , t;
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn % mod)
t = w * a[j + (k >> 1)] % mod , a[j + (k >> 1)] = (a[j] - t + mod) % mod , a[j] = (a[j] + t) % mod;
}
}
if(flag == -1)
{
k = pow(len , mod - 2);
for(i = 0 ; i < len ; i ++ ) a[i] = a[i] * k % mod;
}
}
int main()
{
int n , i , len = 1;
ll inv = 1 , ans = 0;
scanf("%d" , &n);
a[0] = b[0] = fac[0] = p[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
fac[i] = fac[i - 1] * i % mod , p[i] = p[i - 1] * 2 % mod;
inv = inv * pow(i , mod - 2) % mod;
if(i & 1) a[i] = mod - inv;
else a[i] = inv;
if(i == 1) b[i] = n + 1;
else b[i] = (pow(i , n + 1) - 1) * (pow(i - 1 , mod - 2)) % mod * inv % mod;
}
while(len <= 2 * n) len <<= 1;
ntt(a , len , 1) , ntt(b , len , 1);
for(i = 0 ; i < len ; i ++ ) a[i] = a[i] * b[i] % mod;
ntt(a , len , -1);
for(i = 0 ; i <= n ; i ++ ) ans = (ans + fac[i] * p[i] % mod * a[i]) % mod;
printf("%lld\n" , ans);
return 0;
}
【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT的更多相关文章
- [BZOJ4555 TJOI2016 HEOI2016 求和]
第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ ...
- [BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 525 Solved: 418[Sub ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...
- Bzoj4555: [Tjoi2016&Heoi2016]求和
题面 Bzoj Sol 推柿子 因为当\(j>i\)时\(S(i, j)=0\),所以有 \[\sum_{i=0}^{n}\sum_{j=0}^{n}S(i, j)2^j(j!)\] 枚举\(j ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- 【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 315 Solved: 252 Des ...
随机推荐
- UVA 12118 Inspector's Dilemma(连通性,欧拉路径,构造)
只和连通分量以及度数有关.不同连通分量只要连一条边就够了,连通分量为0的时候要特判.一个连通分量只需看度数为奇的点的数量,两个端点(度数为奇)是必要的. 如果多了,奇点数也一定是2的倍数(一条边增加两 ...
- kubernetes-存储卷(十二)
为了保证数据的持久性,必须保证数据在外部存储在docker容器中,为了实现数据的持久性存储,在宿主机和容器内做映射,可以保证在容器的生命周期结束,数据依旧可以实现持久性存储.但是在k8s中,由于pod ...
- 【6.20校内test】
反正考的不是很好吧,赶脚炸了啊qwq 然后这两天一直在忙一些神奇的事情,所以没有整理完 手动@water_lift T1:大美江湖: [题目背景] 细雪飘落长街,枫叶红透又一年 不只为故友流连,其实我 ...
- 关于Runtime Issues
前言:在使用某移动直播的SDK的时候发现,在Run应用的时候会有紫色的警告(Xcode9 + iOS11) 当时还专门提交了工单,当时对方的回复是,大概意思是不影响使用,后期修复. 今天看视频发现这是 ...
- java算法面试题:编写一个程序,将a.txt文件中的单词与b.txt文件中的单词交替合并到c.txt文件中,a.txt文件中的单词用回车符分隔,b.txt文件中用回车或空格进行分隔。
package com.swift; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File ...
- 理解Express 中间件
Express 中间件 Express程序基本上是一系列中间件函数的调用.中间件就是一个函数, 接受 req.res.next几个参数. 中间件函数可以执行任何代码, 对请求和响应对象进行修改, 结束 ...
- MySQL - EXISTS 和 NOT EXISTS
语法规则: SELECT * FROM tableName t WHERE 1 = 1 AND 2 = 2 AND EXISTS (SELECT * FROM tableName t2 WHERE ...
- NoSQL - KVstore -Redis
Redis键迁移 在使用Redis的过程中,很多时候我们会遇到需要进行键迁移的问题,需要将指定Redis中的指定数据迁移到其他Redis当中,键迁移有三种方法,我们来进行一一介绍. 一.move mo ...
- shell数组脚本
#!/bin/bash array=( ) ;i<${#array[*]};i++)) do echo ${array[i]} done 脚本2 #!/bin/bash array=( ) fo ...
- 前端JS转图片为base64并压缩、调整尺寸脚本
image to base64 to blob //////////////////////////////////////////////////////////////////////////// ...