BZOJ 3130: [Sdoi2013]费用流 网络流+二分
3130: [Sdoi2013]费用流
Time Limit: 10 Sec Memory Limit: 128 MBSec Special Judge
Submit: 1230 Solved: 598
[Submit][Status][Discuss]
Description
Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。
最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。
上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。 对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。
Input
第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。
Output
第一行一个整数,表示最大流的值。
第二行一个实数,表示总费用。建议选手输出四位以上小数。
Sample Input
1 2 10
2 3 15
Sample Output
10.0000
HINT
【样例说明】
对于Alice,最大流的方案是固定的。两条边的实际流量都为10。
对于Bob,给第一条边分配0.5的费用,第二条边分配0.5的费用。总费用
为:10*0.5+10*0.5=10。可以证明不存在总费用更大的分配方案。
【数据规模和约定】
对于20%的测试数据:所有有向边的最大流量都是1。
对于100%的测试数据:N < = 100,M < = 1000。
对于l00%的测试数据:所有点的编号在I..N范围内。1 < = 每条边的最大流
量 < = 50000。1 < = P < = 10。给定运输网络中不会有起点和终点相同的边。
Source
想法:题目中“Bob在分配单位花费之前,已经知道Alice所给出的最大流方案”,就是说Alice选了一个方案后,Bob才分配。通过乘法分配律什么的,可以得到Bob把花费全放在在流量最大的那条边上的总费用最优。于是限制一下通过一条边的最大流量。
鉴于$\frac{最大流}{路径数}$可能为实数,所以上限可以是实数。然后就是二分+网络流了.....
#include<cstdio> typedef long long ll;
const int MAXN(),MAXM();
const double eps(1e-),INF(0x7fffffff);
int n,m,p,a[MAXM],b[MAXM],c[MAXM],S,T;
double sum,big_flow,small_cost;
struct Node{int nd,nx;double fl;}bot[MAXM<<];int tot=,first[MAXN];
void add(int a,int b,double f){bot[++tot]=(Node){b,first[a],f};first[a]=tot;}
void addedge(int a,int b,double f){add(a,b,f);add(b,a,);}
double min(double a,double b){return a>b?b:a;}
void build(double limt)
{
for(int i=;i<=n;i++)first[i]=;tot=;
for(int i=;i<=m;i++) addedge(a[i],b[i],min(limt,c[i]));
}
int q[MAXN],dis[MAXN],l,h,now;
bool bfs(int S,int T)
{
for(int i=;i<=n;i++)dis[i]=INF;
q[l=]=S;dis[S]=;h=;
while(h<l)
{
now=q[++h];
for(int v=first[now];v;v=bot[v].nx)
if(bot[v].fl>eps&&dis[bot[v].nd]==INF)
q[++l]=bot[v].nd,dis[bot[v].nd]=dis[now]+;
}
return dis[T]!=INF;
}
double dfs(int x,int T,double flow)
{
if(x==T)return flow;
double sum=,tmp;
for(int v=first[x];v;v=bot[v].nx)
if(bot[v].fl>eps&&dis[bot[v].nd]==dis[x]+)
{
tmp=dfs(bot[v].nd,T,min(bot[v].fl,flow));
sum+=tmp; flow-=tmp;
bot[v].fl-=tmp; bot[v^].fl+=tmp;
if(!flow)break;
}
if(!sum)dis[x]=-;
return sum;
}
bool ok(double limt)
{
build(limt); sum=;
while(bfs(S,T)) sum+=dfs(S,T,INF);
return sum>=big_flow-eps;
}
int main()
{
// freopen("C.in","r",stdin);
// freopen("C.out","w",stdout);
scanf("%d %d %d",&n,&m,&p);S=;T=n;
for(int i=;i<=m;i++) scanf("%d %d %d",a+i,b+i,c+i);
ok(INF); big_flow=sum;
for(double l=,r=big_flow,mid;l+eps<r;)
if(ok(mid=(l+r)/))r=mid,small_cost=mid;else l=mid;
printf("%.0lf\n%.4lf\n",big_flow,small_cost*p);
return ;
}
BZOJ 3130: [Sdoi2013]费用流 网络流+二分的更多相关文章
- BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流
https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...
- bzoj 3130 [Sdoi2013]费用流(二分,最大流)
Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...
- BZOJ 3130 [Sdoi2013]费用流 ——网络流
[题目分析] 很容易想到,可以把P放在流量最大的边上的时候最优. 所以二分网络流,判断什么时候可以达到最大流. 流量不一定是整数,所以需要实数二分,整数是会WA的. [代码] #include < ...
- bzoj 3130: [Sdoi2013]费用流
#include<cstdio> #include<iostream> #define M 10000 #define inf 0x7fffffff #include<c ...
- 3130: [Sdoi2013]费用流
Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案 ...
- BZOJ 1283 序列 费用流 网络流 线性规划
https://darkbzoj.cf/problem/1283 给出一个长度为N的正整数序列Ci,求一个子序列,使得原序列中任意长度为M的子串中被选出的元素不超过K(K,M<=100) 个,并 ...
- BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 960 Solved: 5 ...
- bzoj千题计划133:bzoj3130: [Sdoi2013]费用流
http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...
- P3305 [SDOI2013]费用流
题目描述 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量. 一个合法的网络流方案必须满足: ...
随机推荐
- 在VC6的debug框里面输出版权信息
在VC6的debug框里面输出版权信息,效果如下: 原理是: 新建一个批处理文档:如:"info.bat",放置到工程目录下[和dsw同级] @echo ===本程序作者是不要呵呵 ...
- python :字符串,列表,元组,集合,字典
字符串方法: 字符串是一个有序的,不可修改的,元素是以引号包围的序列.单引号,双引号,三引号,str生成 字符串的修饰 a='novo gene' a.center() 让字符串在指定的长度居中显 ...
- 《精通Spring4.X企业应用开发实战》读后感第三章
- ASP.NET自定义控件组件开发
ASP.NET的开发都是事件驱动的,现在我们就来为控件添加事件.在事件之前 对委托事件要要熟悉. 其实定义事件的步骤很简单: 1.声明一个委托. 2.定义一个携带事件信息的类. 3.定义事件 4.定义 ...
- Flask中的后端并发思考(以Mysql:too many connections为例)
之前写过一篇<CentOS 下部署Nginx+Gunicorn+Supervisor部署Flask项目>,最近对该工程的功能进行了完善,基本的功能单元测试也做了. 觉得也是时候进行一下压力 ...
- birt启动后访问地址详解
发布设计完成的报表文件,可在web项目中创建reports目录,用于存放报表设计文件. 在应用中通过正确格式的访问路径,例如:http://localhost:8080/birtApp/framese ...
- css中vw和vh的知识点
引用文档:http://caibaojian.com/vw-vh.html: http://www.zhangxinxu.com/wordpress/2012/09/new-viewport-rela ...
- IT兄弟连 Java语法教程 变量1
什么是变量 在Java程序中,变量是基本的存储单元.是在程序运行中值可以改变的一块内存区域.变量是通过标识符(变量名).变量类型及可选的初始化器来定义的,此外,所有的变量都有作用域,作用域定义了变量的 ...
- 2、CreateJS介绍-TweenJS
需要在html5文件中引入的CreateJS库文件是easeljs-0.7.1.min.js和tweenjs-0.5.1.min.js HTML5文件如下: <!DOCTYPE html> ...
- IntelliJ IDEA 打包Maven 构建的 Java 项目
方法 2,一键生成方便到哭 打开maven项目路径 一键生成 3.生成jar 目标文件在 path/target/xx.jar下面 方法 1 选中Java项目工程名称,在菜单中选择 F ...