【二分 最小割】cf808F. Card Game
Digital collectible card games have become very popular recently. So Vova decided to try one of these.
Vova has n cards in his collection. Each of these cards is characterised by its power pi, magic number ci and level li. Vova wants to build a deck with total power not less than k, but magic numbers may not allow him to do so — Vova can't place two cards in a deck if the sum of the magic numbers written on these cards is a prime number. Also Vova cannot use a card if its level is greater than the level of Vova's character.
At the moment Vova's character's level is 1. Help Vova to determine the minimum level he needs to reach in order to build a deck with the required total power.
Input
The first line contains two integers $n$ and $k$ $(1 ≤ n ≤ 100, 1 ≤ k ≤ 100000)$.
Then n lines follow, each of these lines contains three numbers that represent the corresponding card: $p_i$, $c_i$ and $l_i$ $(1 ≤ p_i ≤ 1000, 1 ≤ c_i ≤ 100000, 1 ≤ l_i ≤ n)$.
Output
If Vova won't be able to build a deck with required power, print $ - 1$. Otherwise print the minimum level Vova has to reach in order to build a deck.
题目大意
有$n$个物品,每个物品具有属性$p_i能量,c_i魔力,l_i等级$。要求选出一些物品在满足 两两魔力和为合数 且 总能量大于等于k 的情况下等级最低。
题目分析
首先可以用二分去掉等级这一维。对物品魔力的奇偶性考虑,则可以将物品分为奇偶两列,并保证了这两列物品各自是只能组成合数的(对于特殊的素数2=1+1,需要预先只保留一个能量最大且合法的1)。
考虑以上方式的建图,直观的意义就是若选了物品i,j(各为奇偶),那么就一定会导致不合法。用边权来表示避免这种情况的代价,则是下图所示的建图方式。
由此可见,对于一种情况的最大能量,就是该图的能量总和-最小割。
听说这是一种经典的最小割模型?
#include<bits/stdc++.h>
const int maxn = ;
const int maxm = ;
const int maxNum = ;
const int INF = 2e9; struct Edge
{
int u,v,f,c;
Edge(int a=, int b=, int c=, int d=):u(a),v(b),f(c),c(d) {}
}edges[maxm];
bool pr[maxNum];
int n,K,ans,L,R,mid,tag,cnt,S,T;
int p[maxn],c[maxn],l[maxn],sv[maxn];
int edgeTot,head[maxn],nxt[maxm],lv[maxn]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void addedge(int u, int v, int c)
{
edges[edgeTot] = Edge(u, v, , c), nxt[edgeTot] = head[u], head[u] = edgeTot++;
edges[edgeTot] = Edge(v, u, , ), nxt[edgeTot] = head[v], head[v] = edgeTot++;
}
bool buildLevel()
{
memset(lv, , sizeof lv);
std::queue<int> q;
lv[S] = , q.push(S);
for (int tmp; q.size(); )
{
tmp = q.front(), q.pop();
for (int i=head[tmp]; i!=-; i=nxt[i])
{
int v = edges[i].v;
if (!lv[v]&&edges[i].f < edges[i].c){
lv[v] = lv[tmp]+, q.push(v);
if (v==T) return true;
}
}
}
return false;
}
int fndPath(int x, int lim)
{
if (x==T) return lim;
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i].v, val;
if (lv[x]+==lv[v]&&edges[i].f < edges[i].c){
if ((val = fndPath(v, std::min(lim, edges[i].c-edges[i].f)))){
edges[i].f += val, edges[i^].f -= val;
return val;
}else lv[v] = -;
}
}
return ;
}
int dinic()
{
int ret = , val;
while (buildLevel())
while ((val = fndPath(S, INF)))
ret += val;
return ret;
}
int main()
{
n = read(), K = read();
for (int i=; i<maxNum; i++)
if (!pr[i]) for (int j=i+i; j<maxNum; j+=i)
pr[j] = true;
for (int i=; i<=n; i++)
p[i] = read(), c[i] = read(), l[i] = read();
ans = -, L = , R = , S = , T = n+;
for (mid=(L+R)>>; L<=R; mid=(L+R)>>)
{
memset(head, -, sizeof head);
sv[] = tag = cnt = edgeTot = ;
for (int i=; i<=n; i++)
if ((c[i]==&&p[i] > p[tag])&&(l[i] <= mid)) tag = i;
for (int i=; i<=n; i++)
if ((c[i]!=||i==tag)&&(l[i] <= mid)) sv[++sv[]] = i;
for (int i=; i<=sv[]; cnt += p[sv[i]], i++)
if (c[sv[i]]&) addedge(S, i, p[sv[i]]);
else addedge(i, T, p[sv[i]]);
for (int i=; i<=sv[]; i++)
if (c[sv[i]]&) for (int j=; j<=sv[]; j++)
if ((~c[sv[j]]&)&&(!pr[c[sv[i]]+c[sv[j]]]))
addedge(i, j, INF);
cnt -= dinic();
if (cnt >= K) ans = mid, R = mid-;
else L = mid+;
}
printf("%d\n",ans);
return ;
}
END
【二分 最小割】cf808F. Card Game的更多相关文章
- 最大密集子图(01分数规划+二分+最小割)POJ3155
题意:给出一副连通图,求出一个子图令g=sigma(E)/sigma(V); h[g]=sigma(E)-g*sigma(V):设G是最优值 则当h[g]>0:g<G h[g]<0, ...
- poj 3155 二分+最小割求实型最小割(最大密集子图)
/* 最大密集子图子图裸题 解法:设源点s和汇点t 根据胡波涛的<最小割模型在信息学中的应用> s-每个点,权值为原边权和m, 每个点-t,权值为m+2*g-degree[i], 原来的边 ...
- 【BZOJ2756】奇怪的游戏(二分,最小割)
题意: Blinker最近喜欢上一个奇怪的游戏.这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻的格子,并使这两个数都加上 1.现在 Blinker 想知道最 ...
- hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)
要选出一些点,这些点之间没有相邻边且要求权值之和最大,求这个权值 分析:二分图带权最大独立集. 用最大流最小割定理求解.其建图思路是:将所有格点编号,奇数视作X部,偶数视作Y部,建立源点S和汇点T, ...
- 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...
- zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)
/* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...
- 【HDU 5855】Less Time, More profit(网络流、最小割、最大权闭合子图)
Less Time, More profit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/O ...
- HDU 2676 Network Wars 01分数规划,最小割 难度:4
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...
- zoj 3165 (最小割,最大点权独立集)
胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二 ...
随机推荐
- Postgresql 10 自带扩展模块功能说明
adminpackadminpack提供了许多支持功能,pgAdmin 和其他管理和管理工具可以使用它们来提供其他功能,例如远程管理服务器日志文件.所有这些功能的使用仅限于超级用户. citext 该 ...
- Spring+SpringMVC+JDBC实现登录
Spring+SpringMVC+JDBC实现登录 有一位程序员去相亲的时候,非常礼貌得说自己是一名程序员,并解释自己是做底层架构的,于是女方听到"底层"两个字,就一脸嫌弃:什么时 ...
- Codeforces 319D Have You Ever Heard About the Word?
首先会想到|x|是不递减的. 于是可以枚举长度L. 再每个L设一个断点,xx必定经过两个断点. 两两断点间求最长公共前后缀,这里用hash+二分会快. 然后一波扫过去就好了. 如果找到了,hash就要 ...
- 牛客假日团队赛2 G.CountyFairEvents
链接: https://ac.nowcoder.com/acm/contest/924/G 题意: Farmer John has returned to the County Fair so he ...
- 用Open Live Writer写博体验
感觉还蛮方便的--openlivewriter第一博!
- Vue --6 router进阶、单页面应用(SPA)带来的问题
一.Vue-router进阶 回顾学过的vue-router,并参考官方文档学习嵌套路由等路由相关知识. 二.单页面应用(SPA)带来的问题 1.虽然单页面应用有优点,但是,如果后端不做服务器渲染(h ...
- Java字节码分析
目录 Java字节码分析 查看字节码详细内容 javap 实例分析 Java字节码分析 对于源码的效率,但从源码来看有时无法分析出准确的结果,因为不同的编译器版本可能会将相同的源码编译成不同的字节码, ...
- SpringBoot+Vue前后端分离,使用SpringSecurity完美处理权限问题(一)
当前后端分离时,权限问题的处理也和我们传统的处理方式有一点差异. 笔者前几天刚好在负责一个项目的权限管理模块,现在权限管理模块已经做完了,我想通过5-6篇文章,来介绍一下项目中遇到的问题以及我的解决方 ...
- 有关在python中使用Redis(一)
python作为一种处理数据的脚本语言本身有许多方法函数供大家使用,有时候为了提升数据处理速度(如海量数据的访问或者海量数据的读取),涉及分布式管理架构,可能需要用到Redis,Redis是一个开源的 ...
- 监听textarea数值变化
监听textarea数值变化 $('#id').bind('input propertychange', function(){ //TODO });