Digital collectible card games have become very popular recently. So Vova decided to try one of these.

Vova has n cards in his collection. Each of these cards is characterised by its power pi, magic number ci and level li. Vova wants to build a deck with total power not less than k, but magic numbers may not allow him to do so — Vova can't place two cards in a deck if the sum of the magic numbers written on these cards is a prime number. Also Vova cannot use a card if its level is greater than the level of Vova's character.

At the moment Vova's character's level is 1. Help Vova to determine the minimum level he needs to reach in order to build a deck with the required total power.

Input

The first line contains two integers $n$ and $k$ $(1 ≤ n ≤ 100, 1 ≤ k ≤ 100000)$.

Then n lines follow, each of these lines contains three numbers that represent the corresponding card: $p_i$, $c_i$ and $l_i$ $(1 ≤ p_i ≤ 1000, 1 ≤ c_i ≤ 100000, 1 ≤ l_i ≤ n)$.

Output

If Vova won't be able to build a deck with required power, print $ - 1$. Otherwise print the minimum level Vova has to reach in order to build a deck.

题目大意

有$n$个物品,每个物品具有属性$p_i能量,c_i魔力,l_i等级$。要求选出一些物品在满足 两两魔力和为合数 且 总能量大于等于k 的情况下等级最低。


题目分析

首先可以用二分去掉等级这一维。对物品魔力的奇偶性考虑,则可以将物品分为奇偶两列,并保证了这两列物品各自是只能组成合数的(对于特殊的素数2=1+1,需要预先只保留一个能量最大且合法的1)。

考虑以上方式的建图,直观的意义就是若选了物品i,j(各为奇偶),那么就一定会导致不合法。用边权来表示避免这种情况的代价,则是下图所示的建图方式。

由此可见,对于一种情况的最大能量,就是该图的能量总和-最小割。

听说这是一种经典的最小割模型?

 #include<bits/stdc++.h>
const int maxn = ;
const int maxm = ;
const int maxNum = ;
const int INF = 2e9; struct Edge
{
int u,v,f,c;
Edge(int a=, int b=, int c=, int d=):u(a),v(b),f(c),c(d) {}
}edges[maxm];
bool pr[maxNum];
int n,K,ans,L,R,mid,tag,cnt,S,T;
int p[maxn],c[maxn],l[maxn],sv[maxn];
int edgeTot,head[maxn],nxt[maxm],lv[maxn]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void addedge(int u, int v, int c)
{
edges[edgeTot] = Edge(u, v, , c), nxt[edgeTot] = head[u], head[u] = edgeTot++;
edges[edgeTot] = Edge(v, u, , ), nxt[edgeTot] = head[v], head[v] = edgeTot++;
}
bool buildLevel()
{
memset(lv, , sizeof lv);
std::queue<int> q;
lv[S] = , q.push(S);
for (int tmp; q.size(); )
{
tmp = q.front(), q.pop();
for (int i=head[tmp]; i!=-; i=nxt[i])
{
int v = edges[i].v;
if (!lv[v]&&edges[i].f < edges[i].c){
lv[v] = lv[tmp]+, q.push(v);
if (v==T) return true;
}
}
}
return false;
}
int fndPath(int x, int lim)
{
if (x==T) return lim;
for (int i=head[x]; i!=-; i=nxt[i])
{
int v = edges[i].v, val;
if (lv[x]+==lv[v]&&edges[i].f < edges[i].c){
if ((val = fndPath(v, std::min(lim, edges[i].c-edges[i].f)))){
edges[i].f += val, edges[i^].f -= val;
return val;
}else lv[v] = -;
}
}
return ;
}
int dinic()
{
int ret = , val;
while (buildLevel())
while ((val = fndPath(S, INF)))
ret += val;
return ret;
}
int main()
{
n = read(), K = read();
for (int i=; i<maxNum; i++)
if (!pr[i]) for (int j=i+i; j<maxNum; j+=i)
pr[j] = true;
for (int i=; i<=n; i++)
p[i] = read(), c[i] = read(), l[i] = read();
ans = -, L = , R = , S = , T = n+;
for (mid=(L+R)>>; L<=R; mid=(L+R)>>)
{
memset(head, -, sizeof head);
sv[] = tag = cnt = edgeTot = ;
for (int i=; i<=n; i++)
if ((c[i]==&&p[i] > p[tag])&&(l[i] <= mid)) tag = i;
for (int i=; i<=n; i++)
if ((c[i]!=||i==tag)&&(l[i] <= mid)) sv[++sv[]] = i;
for (int i=; i<=sv[]; cnt += p[sv[i]], i++)
if (c[sv[i]]&) addedge(S, i, p[sv[i]]);
else addedge(i, T, p[sv[i]]);
for (int i=; i<=sv[]; i++)
if (c[sv[i]]&) for (int j=; j<=sv[]; j++)
if ((~c[sv[j]]&)&&(!pr[c[sv[i]]+c[sv[j]]]))
addedge(i, j, INF);
cnt -= dinic();
if (cnt >= K) ans = mid, R = mid-;
else L = mid+;
}
printf("%d\n",ans);
return ;
}

END

【二分 最小割】cf808F. Card Game的更多相关文章

  1. 最大密集子图(01分数规划+二分+最小割)POJ3155

    题意:给出一副连通图,求出一个子图令g=sigma(E)/sigma(V); h[g]=sigma(E)-g*sigma(V):设G是最优值 则当h[g]>0:g<G h[g]<0, ...

  2. poj 3155 二分+最小割求实型最小割(最大密集子图)

    /* 最大密集子图子图裸题 解法:设源点s和汇点t 根据胡波涛的<最小割模型在信息学中的应用> s-每个点,权值为原边权和m, 每个点-t,权值为m+2*g-degree[i], 原来的边 ...

  3. 【BZOJ2756】奇怪的游戏(二分,最小割)

    题意: Blinker最近喜欢上一个奇怪的游戏.这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻的格子,并使这两个数都加上 1.现在 Blinker 想知道最 ...

  4. hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)

    要选出一些点,这些点之间没有相邻边且要求权值之和最大,求这个权值 分析:二分图带权最大独立集. 用最大流最小割定理求解.其建图思路是:将所有格点编号,奇数视作X部,偶数视作Y部,建立源点S和汇点T, ...

  5. 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型

    最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...

  6. zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)

    /* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...

  7. 【HDU 5855】Less Time, More profit(网络流、最小割、最大权闭合子图)

    Less Time, More profit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  8. HDU 2676 Network Wars 01分数规划,最小割 难度:4

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...

  9. zoj 3165 (最小割,最大点权独立集)

    胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二 ...

随机推荐

  1. 【实验吧】该题不简单——writeup

    题目地址:http://ctf5.shiyanbar.com/crack/3/ 一定要注意读题: 要求找出用户名为hello的注册码,这八成就是 要写注册机啊! ——————————————————— ...

  2. 解决import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder;报错的问题

    在项目中用到这两个Jar包,但是程序报错. Access restriction: The type BASE64Decoder is not accessible due to restrictio ...

  3. mac mysql 编码配置

    mac mysql 编码配置 (mysql目录下没有my.cnf) 想要修改编码发现自己的/usr/local/mysql/support-files里面根本没有my.cnf 安装方式是去mysql官 ...

  4. Django -- 权限初识

    待 需求分析-场景 假设需要为公司设计一个人员管理系统,并为各级领导及全体员工分配系统登录账号.有如下几个要求: 1.权限等级不同 公司领导登录后可查看所有员工的信息,部门领导登陆后之可查看本部门员工 ...

  5. (转)Linux命令之Ethtool用法详解

    Linux命令之Ethtool用法详解 原文:http://www.linuxidc.com/Linux/2012-01/52669.htm Linux/Unix命令之Ethtool描述:Ethtoo ...

  6. MySQL 查看表大小

    当遇到数据库占用空间很大的情况下,可以用以下语句查找大数据量的表 SELECT TABLE_NAME ,),) 'DATA_SIZE(M)' ,),) 'INDEX_SIZE(M)' ,AVG_ROW ...

  7. 使用 swift3.0高仿新浪微博

    项目地址:https://github.com/SummerHH/swift3.0WeBo 使用 swift3.0 高仿微博,目前以实现的功能有,添加访客视图,用户信息授权,首页数据展示(支持正文中连 ...

  8. Java基础:(八)异常

    Throwable可以用来表示任何可以作为异常抛出的类,分为两种:Error和Exception.其中Error用来表示JVM无法处理的错误, Exception又分为两种: 受检异常:需要用try. ...

  9. SQL概念及DDL语句

    SQL概念 SQL全称(Structured Query Language):结构化查询语句,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询和管理关系型数据库. 其实就 ...

  10. vue2.0:(七)、vue-resource

    本篇文章开始前,先介绍下什么是vue-resource,并且现在还有一个axios. Vue.js是数据驱动的,这使得我们并不需要直接操作DOM,如果我们不需要使用jQuery的DOM选择器,就没有必 ...