第二道高斯消元练习题


题意

一张无向图,从点 $1$ 出发每次随机选一条出边走,走到 $n$ 停止,求经过的所有边权异或和的期望。

$n\le 100$

题解

注意一点,异或和的期望 $≠$ 期望的异或和,因为期望是小数,但小数(在 c++ 里)不能异或,而且“期望”具体是什么期望啊。

异或有一个神奇的性质就是每个二进制位互不关联。

所以我们可以拆开考虑每一个二进制位的异或和。

拆位考虑后,还能发现一位的异或和只能是 $0$ 或 $1$,还比较好维护。

对于当前考虑的一个二进制位,设 $dp(i)$ 表示走到点 $i$ 时异或和为 $1$ 的概率,则 $1-dp(i)$ 表示异或和为 $0$ 的概率。

转移也比较显然:$$f(i) = \frac{\sum_{w=0} f(x) + \sum_{w=1} (1-f(x))}{du_i}$$

其中点 $x$ 表示与点 $i$ 直接相连的点,$w$ 表示这条连边的边权。

通过拆 $\sum$、移项得到 $$-\sum_{w=1} 1 = \sum_{w=0} f(x) - \sum_{w=1} f(x) - f(i)\times du_i$$

这就是标准高斯消元的方程了。

合并每个二进制位的答案:$ans+=2^i\times dp_i(n)$

【HNOI2011/bzoj2337】XOR和路径的更多相关文章

  1. BZOJ-2337 XOR和路径(HNOI2011)概率DP+概率的线性叠加

    题意:给出n个点和m条边,每条边有权值wi,从1出发,每次等概率选一条出边走,直到终点n停止,得到的值是路径所有边的异或和.问异或和期望. 解法:这道题非常有意思!首先比较直观的想法就是dp[x]代表 ...

  2. bzoj2337 XOR和路径

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 首先:因为是异或和,所以可以考虑每一位考虑. 就在每一位上求一下该位是1的概率,乘以1 ...

  3. bzoj2337 XOR和路径——高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 异或就一位一位考虑: x为到n的概率,解方程组即可: 考虑了n就各种蜜汁错误,所以索性 ...

  4. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  5. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  6. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  7. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  8. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  9. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  10. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

随机推荐

  1. 【转】iOS开发-文件管理(一)

    iOS开发-文件管理(一) 一.iOS中的沙盒机制 iOS应用程序只能对自己创建的文件系统读取文件,这个独立.封闭.安全的空间,叫做沙盒.它一般存放着程序包文件(可执行文件).图片.音频.视频.pli ...

  2. js学习笔记-字符串

    1.需要注意的是,JavaScript 的字符串是不可变的(immutable),String 类定义的方法都不能改变字符串的内容.像 String.toUpperCase() 这样的方法,返回的是全 ...

  3. Servlet的引入(即加入Servlet)

    今天讲的Servlet是根据上一章节<创建一个学生信息表,与页面分离>而结合. 一.看图分析 此模式有问题: 1.jsp需要呼叫javabean StudentService stuSer ...

  4. iOS与JS相互传值与交互

    JavaScriptCore是webkit的一个重要组成部分,主要是对JS进行解析和提供执行环境.iOS7后苹果在iPhone平台推出,极大的方便了我们对js的操作.我们可以脱离webview直接运行 ...

  5. Some tricks

    一 . \(2^i >\sum_{0}^{i - 1}2^i\) 二. 当概率非常小时,且答案允许范围内的误差.如与正确答案不超过\(2^{-6}\)即可. 选取一个较小的值,然后取min即可. ...

  6. Mysql中反引号和单引号的区别

    反引号,一般在ESC键的下方. 它是为了区分MYSQL的保留字与普通字符而引入的符号.举个例子:SELECT `select` FROM `test` WHERE select='字段值'在test表 ...

  7. k8s资源指标API及metrics-server资源监控

    简述: 在k8s早期版本中,对资源的监控使用的是heapster的资源监控工具. 但是从 Kubernetes 1.8 开始,Kubernetes 通过 Metrics API 获取资源使用指标,例如 ...

  8. Python爬虫系列-PyQuery详解

    强大又灵活的网页解析库.如果你觉得正则写起来太麻烦,如果你觉得BeautifulSoup语法太难记,如果你熟悉jQuery的语法,那么PyQuery就是你的最佳选择. 安装 pip3 install ...

  9. hessian应用示例

    因为公司的项目远程调用采用的是hessian,故抽时间了解了下hessian,自己也写了一个应用实例,以便加深对hessian的理解. Hessian是一个轻量级的remoting onhttp工具, ...

  10. apply(), applymap(), map()

    Pandas 中map, applymap and apply的区别  https://blog.csdn.net/u010814042/article/details/76401133/ Panda ...