第二道高斯消元练习题


题意

一张无向图,从点 $1$ 出发每次随机选一条出边走,走到 $n$ 停止,求经过的所有边权异或和的期望。

$n\le 100$

题解

注意一点,异或和的期望 $≠$ 期望的异或和,因为期望是小数,但小数(在 c++ 里)不能异或,而且“期望”具体是什么期望啊。

异或有一个神奇的性质就是每个二进制位互不关联。

所以我们可以拆开考虑每一个二进制位的异或和。

拆位考虑后,还能发现一位的异或和只能是 $0$ 或 $1$,还比较好维护。

对于当前考虑的一个二进制位,设 $dp(i)$ 表示走到点 $i$ 时异或和为 $1$ 的概率,则 $1-dp(i)$ 表示异或和为 $0$ 的概率。

转移也比较显然:$$f(i) = \frac{\sum_{w=0} f(x) + \sum_{w=1} (1-f(x))}{du_i}$$

其中点 $x$ 表示与点 $i$ 直接相连的点,$w$ 表示这条连边的边权。

通过拆 $\sum$、移项得到 $$-\sum_{w=1} 1 = \sum_{w=0} f(x) - \sum_{w=1} f(x) - f(i)\times du_i$$

这就是标准高斯消元的方程了。

合并每个二进制位的答案:$ans+=2^i\times dp_i(n)$

【HNOI2011/bzoj2337】XOR和路径的更多相关文章

  1. BZOJ-2337 XOR和路径(HNOI2011)概率DP+概率的线性叠加

    题意:给出n个点和m条边,每条边有权值wi,从1出发,每次等概率选一条出边走,直到终点n停止,得到的值是路径所有边的异或和.问异或和期望. 解法:这道题非常有意思!首先比较直观的想法就是dp[x]代表 ...

  2. bzoj2337 XOR和路径

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 首先:因为是异或和,所以可以考虑每一位考虑. 就在每一位上求一下该位是1的概率,乘以1 ...

  3. bzoj2337 XOR和路径——高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 异或就一位一位考虑: x为到n的概率,解方程组即可: 考虑了n就各种蜜汁错误,所以索性 ...

  4. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  5. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  6. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  7. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  8. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  9. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  10. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

随机推荐

  1. [CV笔记]图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  2. python面试笔试题汇总

    Python面试攻略(嗨谈篇) 110道python面试笔试题汇总,你能答对几道? Python 面试问答 Top 25 2018 年最常见的 Python 面试题 & 答案

  3. 从Docker到Kubernetes进阶

    分享个网站,k8s技术圈阳明大佬的网站 现在基本都用有道云笔记了,比较方便,所以准备弃用博客园了...

  4. 最大长度回文子串(Manacher's algorithm)

    输出最大长度的回文子串. string longestPalindrome(string s) { int id, mx, i, j, len, maxlen; vector<char> ...

  5. c3p0,dbcp和proxool

    关于c3p0.dbcp和proxool,之类的比较,配置在网上有很多的文章,我这边就不浪费大家的时间了,主要讲下我用过这三个之后的体会. dbcp:框架以前使用的是dbcp,网上说,有很多BUG,至少 ...

  6. dht 分布式hash 一致性hash区别

    先有一致性hash :一致性哈希,似乎最早提出是在分布式缓存里面的,让节点震荡的时候,影响最小.不过现在已经应用在分布式存储和p2p系统里面. dht 是p2p领域的概念,内有三大概念是由keyspa ...

  7. Codevs1081 线段树练习 2

    题目描述 Description 给你N个数,有两种操作 1:给区间[a,b]的所有数都增加X 2:询问第i个数是什么? 输入描述 Input Description 第一行一个正整数n,接下来n行n ...

  8. 浅谈一类「AC自动机计数」问题

    最近写了几道AC自动机的题.这几题主要考察的是对AC自动机的浅层理解套上计数. 几道计数题 [AC自动机]bzoj3172: [Tjoi2013]单词 把被动贡献看成主动贡献. [状态压缩dp]119 ...

  9. 【Linux命令】nohup和&差异,查看进程和终止进程!

    最近在开发dueros的技能,官方提供的PHPSDK中有多个实力,而运行实例的命令如下是 nohup php -S 0.0.0.0:8029 myindex.php & 从命令来看,肯定是在8 ...

  10. SQL前后端分页

    /class Page<T> package com.neusoft.bean; import java.util.List; public class Page<T> { p ...