Description

Text is a sequence of words, and a word consists of characters. Your task is to put words into a grid with W columns and sufficiently many lines. For the beauty of the layout, the following conditions have to be satisfied.

  1. The words in the text must be placed keeping their original order. The following figures show correct and incorrect layout examples for a 4 word text "This is a pen" into 11 columns.

    Figure I.1: A good layout.

    Figure I.2: BAD | Do not reorder words.

  2. Between two words adjacent in the same line, you must place at least one space character. You sometimes have to put more than one space in order to meet other conditions.



    Figure I.3: BAD | Words must be separated by spaces.

  3. A word must occupy the same number of consecutive columns as the number of characters in it. You cannot break a single word into two or more by breaking it into lines or by inserting spaces.



    Figure I.4: BAD | Characters in a single word must be contiguous.

  4. The text must be justified to the both sides. That is, the first word of a line must startfrom the first column of the line, and except the last line, the last word of a line must end at the last column.



    Figure I.5: BAD | Lines must be justi ed to both the left and the right sides.

The text is the most beautifully laid out when there is no unnecessarily long spaces. For instance, the layout in Figure I.6 has at most 2 contiguous spaces, which is more beautiful than that in Figure I.1, having 3 contiguous spaces. Given an input text
and the number of columns, please find a layout such that the length of the longest contiguous spaces between words is minimum.

Figure I.6: A good and the most beautiful layout.

Input

The input consists of multiple datasets, each in the following format.

W N

    x
1x2 ... xN

WN, and xi are all integers. W is the number of columns (3 ≤ W ≤ 80,000). N is the number of words (2 ≤ N ≤ 50,000). xi is the number of characters in the i-th
word (1 ≤ xi ≤ (W−1)/2 ). Note that the upper bound on xi assures that there always exists a layout satisfying the conditions.

The last dataset is followed by a line containing two zeros.

Output

For each dataset, print the smallest possible number of the longest contiguous spaces between words.

Sample Input

11 4
4 2 1 3
5 7
1 1 1 2 2 1 2
11 7
3 1 3 1 3 3 4
100 3
30 30 39
30 3
2 5 3
0 0

Output for the Sample Input

2
1
2
40
1

题意:给你一个含n个单词的文本。依照一些规则放入宽度为w的矩形中,如何使最大的空格最小。
思路:答案是单调的,二分答案,然后用dp来检验,dp[i]表示第i个单词是否能结尾,easy想到的是n^2检验,可是肯定会TLE的,须要优化。能够发现假设i-j能够放在一行,可是最大空格会超过mid,那么i+1-j也不行,假设用i来推的时候能够推到[s,t]能够,那么下次就能够直接从t+1開始了。

代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define maxn 50005
#define MAXN 200005
#define mod 1000000007
#define INF 0x3f3f3f3f
#define eps 1e-6
const double pi=acos(-1.0);
typedef long long ll;
using namespace std; int n,w;
int len[maxn],sum[maxn];
bool dp[maxn]; bool isok(int mid)
{
int i,j,last=0;
memset(dp,0,sizeof(dp));
dp[0]=1;
if(sum[n]+n-1<=w) return true ;
for(i=0; i<n-1; i++)
{
if(!dp[i]) continue ;
for(j=max(i+2,last+1); j<=n; j++)
{
if(w<sum[j]-sum[i]+j-i-1) break ;
if(w>sum[j]-sum[i]+ll(j-i-1)*mid) continue ;
last=j;
dp[j]=1;
if(sum[n]-sum[j]+n-j-1<=w) return true ;
}
}
return false ;
}
void solve()
{
int i,j,le=1,ri=w,mid,ans;
while(le<=ri)
{
mid=(le+ri)>>1;
if(isok(mid))
{
ans=mid;
ri=mid-1;
}
else le=mid+1;
}
printf("%d\n",ans);
}
int main()
{
int i,j;
while(~scanf("%d%d",&w,&n))
{
if(w==0&&n==0) break ;
sum[0]=0;
for(i=1; i<=n; i++)
{
scanf("%d",&len[i]);
sum[i]=sum[i-1]+len[i];
}
solve();
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

uva live 6190 Beautiful Spacing (二分法+dp试 基于优化的独特性质)的更多相关文章

  1. UVALive 6190 Beautiful Spacing (2012 Tokyo regional)

    Beautiful Spacing 题意是给一个文本排版,求在满足题目所给要求的条件下,最长连续空格最小是多少. trick: 贪心地模拟是错的,至少无法证明正确性. 正解应该是二分答案+验证. 比较 ...

  2. 【BZOJ-4692】Beautiful Spacing 二分答案 + 乱搞(DP?)

    4692: Beautiful Spacing Time Limit: 15 Sec  Memory Limit: 128 MBSubmit: 46  Solved: 21[Submit][Statu ...

  3. UVA 10163 Storage Keepers(两次DP)

    UVA 10163 Storage Keepers(两次DP) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Ite ...

  4. uva 11584 Partitioning by Palindromes 线性dp

    // uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...

  5. UVA - 825Walking on the Safe Side(dp)

    id=19217">称号: UVA - 825Walking on the Safe Side(dp) 题目大意:给出一个n * m的矩阵.起点是1 * 1,终点是n * m.这个矩阵 ...

  6. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  7. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  8. dp的斜率优化

    对于刷题量我觉得肯定是刷的越多越好(当然这是对时间有很多的人来说. 但是在我看来我的确适合刷题较多的那一类人,应为我对知识的应用能力并不强.这两天学习的内容是dp的斜率优化.当然我是不太会的. 这个博 ...

  9. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

随机推荐

  1. Android笔记二十七.Service组件入门(一).什么是Service?

    转载请表明出处:http://blog.csdn.net/u012637501(嵌入式_小J的天空) 一.Service 1.Service简单介绍     Service为Android四大组件之中 ...

  2. 总结文件操作函数-文件夹(三)-C语言

    获取.改变当前文件夹: 原型为: #include <unistd.h>   //头文件 char *getcwd(char *buf, size_t size); //获取当前文件夹.相 ...

  3. 基于Redis Sentinel的Redis集群(主从Sharding)高可用方案(转)

    本文主要介绍一种通过Jedis&Sentinel实现Redis集群高可用方案,该方案需要使用Jedis2.2.2及以上版本(强制),Redis2.8及以上版本(可选,Sentinel最早出现在 ...

  4. Unity MVC框架 StrangeIoC

    StrangeIoC是一个超轻量级和高度可扩展的控制反转(IoC)框架,专门为C#和Unity编写. 项目地址:https://github.com/strangeioc/strangeioc 文档地 ...

  5. 原声JS瀑布流加延迟载入

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. openstack之nova-api服务流程分析

    nova-api公布api服务没实用到一个些框架,基本都是从头写的.在不了解它时,以为它很复杂,难以掌握.花了两三天的时间把它分析一遍后,发现它本身的结构比較简单,主要难点在于对它所使用的一些类库不了 ...

  7. Golang初学者的资源整理

    看了汪汪汪不是我的语言的GO语言零基础入门资料整理,个人感觉还不够全面,忍不住过来补充一些内容. 网站教程: GO语言编程 and GO语言开发2048 from 实验楼Go语言后台应用开发 form ...

  8. oracle nologging用法(转)

    一.oracle日志模式分为(logging,force logging,nologging) 默认情况是logging,就是会记录到redo日志中,force logging是强制记录日志,nolo ...

  9. CC2530 外部中断 提醒

    #include "ioCC2530.h" #define uchar unsigned char #define led1    P1_0 #define led2    P1_ ...

  10. 让UIView窄斜

    让UIView窄斜 by 吴雪莹 [UIView animateWithDuration:0.5 animations:^{ CGAffineTransform t = CGAffineTransfo ...