BZOJ 1004: [HNOI2008]Cards(群论)
好吧我就是蒟蒻根本没听说过群论(虽说听叉姐说几万年都不会考)
我也讲不太来,直接戳VFK大神的blog啦 = = http://vfleaking.blog.163.com/blog/static/17480763420119685112649/
然后在加上2001年的论文Pólya原理及其应用 应该能做了吧= =
反正数论题就是各种小心
CODE:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 10000
struct bigint{
int len,a[maxn];
int init(int x){memset(a,0,sizeof(a));a[len=1]=x;}
int print(){
for (int i=len;i>=1;i--) printf("%d",a[i]);
return 0;
}
}f[103];
bigint operator + (const bigint &x,bigint &y) {
bigint ans;
ans.init(0);
ans.len=max(x.len,y.len);
for (int i=1;i<=ans.len;i++) {
ans.a[i]=x.a[i]+y.a[i]+ans.a[i-1]/10;
ans.a[i-1]%=10;
}
if (ans.a[ans.len]/10) {
ans.a[++ans.len]=1;
ans.a[ans.len-1]%=10;
}
return ans;
}
bigint operator - (const bigint &x,bigint &y) {
bigint ans;
ans.init(0);
ans.len=max(x.len,y.len);
for (int i=1;i<=ans.len;i++) {
ans.a[i]=x.a[i]-y.a[i];
if (ans.a[i-1]<0) {ans.a[i-1]+=10;ans.a[i]--;}
}
while (!ans.a[ans.len]) ans.len--;
return ans;
}
bigint operator * (const bigint &x,int y){
bigint ans;
ans.init(0);
ans.len=x.len;
for (int i=1;i<=ans.len;i++) {
ans.a[i]=x.a[i]*y +ans.a[i-1]/10;
ans.a[i-1]%=10;
}
if (ans.a[ans.len]/10) {
ans.a[ans.len+1]=ans.a[ans.len]/10;
ans.a[ans.len++]%=10;
}
return ans;
}
int main(){
int n;
scanf("%d",&n);
f[1].init(1);f[2].init(5);
f[0].init(2);
for (int i=3;i<=n;i++) f[i]=f[i-1]*3-f[i-2]+f[0];
f[n].print();
return 0;
}
BZOJ 1004: [HNOI2008]Cards(群论)的更多相关文章
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...
- BZOJ 1004 HNOI2008 Cards Burnside引理
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...
- BZOJ 1004: [HNOI2008]Cards
Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\fra ...
- BZOJ 1004: [HNOI2008]Cards [Polya 生成函数DP]
传送门 题意:三种颜色,规定使用每种颜色次数$r,g,b$,给出一个置换群,求多少种不等价着色 $m \le 60,\ r,g,b \le 20$ 咦,规定次数? <组合数学>上不是有生成 ...
- bzoj 1004 1004: [HNOI2008]Cards burnside定理
1004: [HNOI2008]Cards Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1668 Solved: 978[Submit][Stat ...
- 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...
- 【BZOJ】1004: [HNOI2008]Cards(置换群+polya+burnside)
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用 ...
随机推荐
- 简单介绍java Enumeration
Enumeration接口 Enumeration接口本身不是一个数据结构.但是,对其他数据结构非常重要. Enumeration接口定义了从一个数据结构得到连续数据的手段.例如,Enumeratio ...
- jsp 获取应用目录
${pageContext.request.contextPath} // 应用名为“demo1” 则得到的是"/demo1" <script>$(documen ...
- webstrom 编码
设置文件保存格式: webstrom的右下角选择你需要的编码
- 《剑指Offer》笔记(更新中)
这几天为了找工作开始看<剑指offer>,到现在也大概浏览一遍了,前两天看作者博客中提到九度OJ,就去看了一下,发现上面有书上的题目,就想可以自己写代码练习一下,而不仅仅是看解题思路,毕竟 ...
- VS2013 opencv2.4.8
[转]http://my.phirobot.com/blog/2014-02-opencv_configuration_in_vs.html vs2010+opencv2.4.0:http://www ...
- ZOJ 1108 & HDU 1160 - FatMouse's Speed
题目大意:给你n只老鼠的体重w和速度s,让你找出最长的子序列使得w[i] < w[j] 且 s[i] > s[j] (i < j).求最长序列的长度并输出该序列. LIS(Longe ...
- http://begin.lydsy.com/JudgeOnline/problem.php?id=2770(PKU2503 Babelfish)
2770: PKU2503 Babelfish Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2 Solved: 2[Submit][Status][ ...
- samba.conf 范例
# Sample configuration file for the Samba suite for Debian GNU/Linux. # # This is the main Samba con ...
- Storm学习笔记六
1 Storm的通信机制 说明:1.worker与worker之间跨进程通信: 2.worker内部中各个executor间的通信,Task对象--->输入队列queue--->执行--- ...
- html标签的嵌套规则分析
1.a标签最好不要嵌套块级元素,可以嵌套内联元素,但是不能嵌套a标签和input之类的标签.能嵌套的标签像,等等. 2.ul和ol的子元素不能是别的元素只能是li,不能是别的比如div等,但是li中可 ...