In computer science, Deadlock is a naughty boy aroused by compete for resources. Even now,

    there isn't a valid method to deal with it. This is amazing. You know, we have many excellent

    scientists,  not all of issues can fight with us so many years. Fortunately, we can still do something

    by sacrifice some system efficiency. Those methods can be divided into three categories:

    Preventation, avoidance, and detection. Let us examine them at the following text.

1.Deadlock Preventation

Deadlock preventation is aim to solve this problem radically. From some point of view, the

    deadlock is weak. It must satisfy some conditions:

            a). the use of resource is mutual exclusive.

            b). No preemptive.

            c). some processes hold the resource that another process waiting.

            d). circle waiting.  i.e: P1 wait P2 release a special resource, P2 wait P3, and P3 wait P1.

Those are necessary conditions. If only we can break one of them, we can win this war. That

    naughty boy will never occur again. The condition (a) is hard to break since we need mutual

    exclusion to ensure the safe of data access, this is reasonable. Now, let us see the remainder.

            condition b -- request all required resources at one time. If the process can't get all of them,

                                then release all of them, and try again.

            condition c -- If we can rob a resource from the process and restore it easily. This will be

                                good choice.

            condition d -- by some ingenious arrangement , we can overcome a circle waiting.

2.Deadlock Aviodance

Deadlock Avoidance is aim to dynamically avoid a deadlock. From some point of view, this is

    possible. But there are some restriction in this method. Now, the problem is how can we ensure

    a action is safe when a process want to allocate some resources. can we ?

we can. As we all know,one of the reason that aroused a deadlock is that the required resource

    has been exceed the exist resources. So we can know whether a action lead to a deadlock

    potentially by this rule. First at all, we need save some information about the status of resouces.

    The following item is necessary. How many resources in this system? How many resouces is

    available? the list of processes which need to those resources? The list of resources which has

    been allocated by processes?

There must be have many solutions. A common method to record those information as following:

            A vector for available resources. i.e:

                    [1,2,3]

            that means resource R1 have 1 unit in current system status; In a similar way, R2 have 2 units,

            and R3 have 3 units.

A vector for the total amount of resources.

                    [2,3,4]

            that means the total of resources R1 is 2 units, R2 is 3, and R3 is 4.

A matrix for the amount of allocated resources.

                         R1   R2   R3

                   P1   1    0    0

                   P2   0    1    1

                   P3   0    0    0

             That means P1 has allocated a R1, P2 has been allocate a R2 and R3, and P3 has

             allocated nothing.

A matrix for the amount of resources what required by process. i.e:

                         R1   R2   R3

                   P1   1     1     1

                   P2   1     1     1

                   P3   1     0     1

        That means, if process P1 want to complete it's work, it need one R1, one R2 and one R3.

Based on our convention above, There are some strategies.

            solution 1:

                    Don't start a process if it's demand may lead to a deadlock.This is conservative strategy.

                we always assume the worst situation. In other words, every process allocate all required

                resources when it start. So if we want to start a process X,we need to know whether this

                condition can be satisfied.(if the process 1~n has running)

                        C[1][i] + C[2][i] +.... C[n][i] + C[x][i] < R[i]  (for all of i)

Athough it is work, but there are some problems here because not all of resources are

                required all the time. Some of them may be used rarely.

solution 2:

                    if all of processes are independent, except for the use of some common resources.

                we could use a more effective method--nest. In this strategy, we grant the request of a

                process only if this process could be completed by current available resources .Think

                about this situation:

   

                    At the beginning. The status of system is,

                            V(available)   =  (5);

                            R(Resources)  =  (10);

                            A(Allocated)   =  {  {2},

                                                        {3},

                                                        {0} };

                            C(Claim)    = { {8},

                                                  {5},

                                                  {5} };

                    Based on this status, we could get

                            C - A = { {6},

                                          {2},

                                          {5} };

we can know P1 can't working because they need 6 uint of resouces and that is out

                of the system's league.In contrast, P2  and P3 is good. In this situation, what should

                we do?

                    The answer is refuse the request from P1, because P1 maybe lead to a deadlock.

Based on our analysis above,If we get a request from P2 about request 1 unit of

                resource, that request should be granted. Then status will become

                            V(available)  =  (4);

                            R(Resources) = (10);

                            A(Allocated)  = { {2},

                                                     {4},

                                                     {0} };

                            C(Claim)    = { {8},

                                                  {5},

                                                  {5} };

                and

                            C - A = { {6},

                                          {1},

                                          {5} };

                    In this status, P1 and P3 is not a nice guy. we should refuse both them....

                    This strategy was called Banker's Algorithm. As we can see, if all of processes is independent,

                it will work more better than the above one.

3. Deadlock Detection

The method above is working by add some restriction to the process. But Deadlock Detection

    is different. It didn't work untill a deadlock occur. In this strategy, the system will grant all of

    request , but will detect whether a deadlock has occur. If a deadlock has been found, the system

    will deal with it by some method. There are two problems here:

 

    Q:   How can we detect a deadlock?

    A:   Actually, this is easy. Recall the banker's algorithm, in there we avoid a deadlock by ensure

          every request is come from a safe process. If we reverse the progress of the banker's

          algorithm, we can get what we want.

a). detect all running processes whether there is a safe process in system. If success,

                go to next step, Or ,terminate this detection.

            b). find a safe process which can working by current available resources.

            c). Assume this process has been completed and release all of resources what it allocated.

            d). return to step a.

when we terminate this detection, the remainder process,which is unlabeled, maybe involve

          a deadlock.

Q:   How can we recover it?

    A:   Actually,there isn't a valid method to do this. That is awful.Fortunately,some method,which

          are not so valid,can working .For example:1).we could set some restore points.But the problem

          is where should be the point;2).Re-assign resource; and so on. we can choice them based on

          where it is.

Deadlock preventation, Deadlock avoidance, and Deadlock detection is aim to deal with a

    deadlock from the point of view of system. But it is the responsibility of the programmer also.

system strategies of Resources Deadlock的更多相关文章

  1. 在运行时切换 WinForm 程序的界面语言 System.ComponentModel.ComponentResourceManager .ApplyResources

    Download the code for this article: WinForm-Multilanguages-2.rar (11 KB). 方法二: 下面介绍一种只需对现有代码做较小改动的方法 ...

  2. 异常:System.InvalidOperationException: This implementation is not part of the Windows Platform FIPS validated cryptographic algorithms FIPS信息标准限值了MD5加密

    最近做的winform项目中,有个功能使用了MD5 加密,本地测试是没有问题的,但是上线后有些用户反馈说提示如下错误 一.问题描述 中文版错误截图 英语版错误截图 具体错误信息: 有关调用实时(JIT ...

  3. The Qt Resource System

    The Qt Resource System The Qt resource system is a platform-independent mechanism for storing binary ...

  4. “System.Runtime.InteropServices.COMException (0x80070422): 无法启动服务”解决方法

    应用程序中发生了无法处理的异常.如果单击“退出”,应用程序将立即关闭.无法启动服务,原因可能是已被禁用或其相关联设备没有启动.(异常来自HRESULT:0X80070422).点击详细内容:有关调用实 ...

  5. 在Magento System Configuration页面添加配置项

    以 Jp_Coupon 模块为例: 目标: 在 System configuration 页面添加一个 JP tab, 在JP中添加 Coupon section, 然后给 Coupon sectio ...

  6. Method, apparatus and system for acquiring a global promotion facility utilizing a data-less transaction

    A data processing system includes a global promotion facility and a plurality of processors coupled ...

  7. 转 Oracle 12c: Managing Resources

    http://www.oracle-class.com/?p=3058 1. Introduction: Oracle database 12c comes with several Resource ...

  8. Method and system for providing security policy for linux-based security operating system

    A system for providing security policy for a Linux-based security operating system, which includes a ...

  9. Single-stack real-time operating system for embedded systems

    A real time operating system (RTOS) for embedded controllers having limited memory includes a contin ...

随机推荐

  1. 第1次实验——NPC问题(回溯算法、聚类分析)

    题目:八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即随意两个皇后都不能处于同一 ...

  2. Codeforces 191 C Fools and Roads (树链拆分)

    主题链接~~> 做题情绪:做了HDU 5044后就感觉非常easy了. 解题思路: 先树链剖分一下,把树剖分成链,由于最后全是询问,so~能够线性操作.经过树链剖分后,就会形成很多链,可是每条边 ...

  3. 深入浅出KnockoutJS

    深入浅出KnockoutJS 写在前面,本文资料大多来源网上,属于自己的学习笔记整理. 其中主要内容来自learn.knockoutjs.com,源码解析部分资料来自司徒正美博文<knockou ...

  4. CMD经常使用的命令

    Win7Excuting订单 win+R.运行该快捷方式.下面3一个人必须知道: ping 它是用来检查网络是否通畅或者网络连接速度的命令. 作为一个生活在网络上的管理员或者黑客来说,ping命令是第 ...

  5. UINavigationController的横屏问题

    近期用代码创建了一个UINavigationController,并且当前的屏幕设置为横屏的,此时遇到的问题是UINavigationController的view的大小为宽768 高1024,也就是 ...

  6. vim ---- 自己主动的按钮indent该命令

    当使用vim一段代码的副本到一个程序时,有,经常indent会有一些问题. . 下面的这个强大的命令,使您可以一键码具有很好的格式. gg=G 样品:         

  7. Fitnesse用系列三

    动态决策表 动态决策表是新出,版本号到今年年初还没有了.我看了看文档和演示文稿样本,其效果是作为一种辅助通用决策表.它不是easy匹配的名称和发射.但假设只有一个或两个参数.不管名字怎么都找不到,这并 ...

  8. Ubuntu 12.04开启3D桌面特效

    1.设定软件源,更新软件 点击左边栏Dash主页(Ubuntu图标),输入更新管理器,会出现更新管理器,打开后点设置,弹出软件源对话框,为确保能够正常更新,选主服务器 点击检查,更新完后,点重启 2. ...

  9. poj 1959 Darts 同意反复组合

    水题.直接贴代码. //poj 1959 //sep9 #include <iostream> using namespace std; int n; int f[128]; int so ...

  10. 升级 树莓派的gcc/g++编译器到4.8

    首先,更新你的树莓派(避免编译出来版本不对导致不能insert)sudo apt-get update sudo apt-get upgrade sudo apt-get dist-upgrade s ...