system strategies of Resources Deadlock
In computer science, Deadlock is a naughty boy aroused by compete for resources. Even now,
there isn't a valid method to deal with it. This is amazing. You know, we have many excellent
scientists, not all of issues can fight with us so many years. Fortunately, we can still do something
by sacrifice some system efficiency. Those methods can be divided into three categories:
Preventation, avoidance, and detection. Let us examine them at the following text.
1.Deadlock Preventation
Deadlock preventation is aim to solve this problem radically. From some point of view, the
deadlock is weak. It must satisfy some conditions:
a). the use of resource is mutual exclusive.
b). No preemptive.
c). some processes hold the resource that another process waiting.
d). circle waiting. i.e: P1 wait P2 release a special resource, P2 wait P3, and P3 wait P1.
Those are necessary conditions. If only we can break one of them, we can win this war. That
naughty boy will never occur again. The condition (a) is hard to break since we need mutual
exclusion to ensure the safe of data access, this is reasonable. Now, let us see the remainder.
condition b -- request all required resources at one time. If the process can't get all of them,
then release all of them, and try again.
condition c -- If we can rob a resource from the process and restore it easily. This will be
good choice.
condition d -- by some ingenious arrangement , we can overcome a circle waiting.
2.Deadlock Aviodance
Deadlock Avoidance is aim to dynamically avoid a deadlock. From some point of view, this is
possible. But there are some restriction in this method. Now, the problem is how can we ensure
a action is safe when a process want to allocate some resources. can we ?
we can. As we all know,one of the reason that aroused a deadlock is that the required resource
has been exceed the exist resources. So we can know whether a action lead to a deadlock
potentially by this rule. First at all, we need save some information about the status of resouces.
The following item is necessary. How many resources in this system? How many resouces is
available? the list of processes which need to those resources? The list of resources which has
been allocated by processes?
There must be have many solutions. A common method to record those information as following:
A vector for available resources. i.e:
[1,2,3]
that means resource R1 have 1 unit in current system status; In a similar way, R2 have 2 units,
and R3 have 3 units.
A vector for the total amount of resources.
[2,3,4]
that means the total of resources R1 is 2 units, R2 is 3, and R3 is 4.
A matrix for the amount of allocated resources.
R1 R2 R3
P1 1 0 0
P2 0 1 1
P3 0 0 0
That means P1 has allocated a R1, P2 has been allocate a R2 and R3, and P3 has
allocated nothing.
A matrix for the amount of resources what required by process. i.e:
R1 R2 R3
P1 1 1 1
P2 1 1 1
P3 1 0 1
That means, if process P1 want to complete it's work, it need one R1, one R2 and one R3.
Based on our convention above, There are some strategies.
solution 1:
Don't start a process if it's demand may lead to a deadlock.This is conservative strategy.
we always assume the worst situation. In other words, every process allocate all required
resources when it start. So if we want to start a process X,we need to know whether this
condition can be satisfied.(if the process 1~n has running)
C[1][i] + C[2][i] +.... C[n][i] + C[x][i] < R[i] (for all of i)
Athough it is work, but there are some problems here because not all of resources are
required all the time. Some of them may be used rarely.
solution 2:
if all of processes are independent, except for the use of some common resources.
we could use a more effective method--nest. In this strategy, we grant the request of a
process only if this process could be completed by current available resources .Think
about this situation:
At the beginning. The status of system is,
V(available) = (5);
R(Resources) = (10);
A(Allocated) = { {2},
{3},
{0} };
C(Claim) = { {8},
{5},
{5} };
Based on this status, we could get
C - A = { {6},
{2},
{5} };
we can know P1 can't working because they need 6 uint of resouces and that is out
of the system's league.In contrast, P2 and P3 is good. In this situation, what should
we do?
The answer is refuse the request from P1, because P1 maybe lead to a deadlock.
Based on our analysis above,If we get a request from P2 about request 1 unit of
resource, that request should be granted. Then status will become
V(available) = (4);
R(Resources) = (10);
A(Allocated) = { {2},
{4},
{0} };
C(Claim) = { {8},
{5},
{5} };
and
C - A = { {6},
{1},
{5} };
In this status, P1 and P3 is not a nice guy. we should refuse both them....
This strategy was called Banker's Algorithm. As we can see, if all of processes is independent,
it will work more better than the above one.
3. Deadlock Detection
The method above is working by add some restriction to the process. But Deadlock Detection
is different. It didn't work untill a deadlock occur. In this strategy, the system will grant all of
request , but will detect whether a deadlock has occur. If a deadlock has been found, the system
will deal with it by some method. There are two problems here:
Q: How can we detect a deadlock?
A: Actually, this is easy. Recall the banker's algorithm, in there we avoid a deadlock by ensure
every request is come from a safe process. If we reverse the progress of the banker's
algorithm, we can get what we want.
a). detect all running processes whether there is a safe process in system. If success,
go to next step, Or ,terminate this detection.
b). find a safe process which can working by current available resources.
c). Assume this process has been completed and release all of resources what it allocated.
d). return to step a.
when we terminate this detection, the remainder process,which is unlabeled, maybe involve
a deadlock.
Q: How can we recover it?
A: Actually,there isn't a valid method to do this. That is awful.Fortunately,some method,which
are not so valid,can working .For example:1).we could set some restore points.But the problem
is where should be the point;2).Re-assign resource; and so on. we can choice them based on
where it is.
Deadlock preventation, Deadlock avoidance, and Deadlock detection is aim to deal with a
deadlock from the point of view of system. But it is the responsibility of the programmer also.
system strategies of Resources Deadlock的更多相关文章
- 在运行时切换 WinForm 程序的界面语言 System.ComponentModel.ComponentResourceManager .ApplyResources
Download the code for this article: WinForm-Multilanguages-2.rar (11 KB). 方法二: 下面介绍一种只需对现有代码做较小改动的方法 ...
- 异常:System.InvalidOperationException: This implementation is not part of the Windows Platform FIPS validated cryptographic algorithms FIPS信息标准限值了MD5加密
最近做的winform项目中,有个功能使用了MD5 加密,本地测试是没有问题的,但是上线后有些用户反馈说提示如下错误 一.问题描述 中文版错误截图 英语版错误截图 具体错误信息: 有关调用实时(JIT ...
- The Qt Resource System
The Qt Resource System The Qt resource system is a platform-independent mechanism for storing binary ...
- “System.Runtime.InteropServices.COMException (0x80070422): 无法启动服务”解决方法
应用程序中发生了无法处理的异常.如果单击“退出”,应用程序将立即关闭.无法启动服务,原因可能是已被禁用或其相关联设备没有启动.(异常来自HRESULT:0X80070422).点击详细内容:有关调用实 ...
- 在Magento System Configuration页面添加配置项
以 Jp_Coupon 模块为例: 目标: 在 System configuration 页面添加一个 JP tab, 在JP中添加 Coupon section, 然后给 Coupon sectio ...
- Method, apparatus and system for acquiring a global promotion facility utilizing a data-less transaction
A data processing system includes a global promotion facility and a plurality of processors coupled ...
- 转 Oracle 12c: Managing Resources
http://www.oracle-class.com/?p=3058 1. Introduction: Oracle database 12c comes with several Resource ...
- Method and system for providing security policy for linux-based security operating system
A system for providing security policy for a Linux-based security operating system, which includes a ...
- Single-stack real-time operating system for embedded systems
A real time operating system (RTOS) for embedded controllers having limited memory includes a contin ...
随机推荐
- SVN的switch命令
语法就不说了,文档有的是,主要是两个常用的用法: . 切换资源库(svn sw --relocate) [plain] view plaincopy svn sw --relocate <fro ...
- poj3264(线段树区间求最值)
题目连接:http://poj.org/problem?id=3264 题意:给定Q(1<=Q<=200000)个数A1,A2,```,AQ,多次求任一区间Ai-Aj中最大数和最小数的差. ...
- 浅析ArrayList,LinkedList的执行效率
以前见过很多文章说这两个东西,感觉自己还是没有深入理解,今天看了书明白一些,在此提出来和大家共同探讨: 面试的时候(基础)一般会问你使用过LinkedList或者ArrayList没有,简单的回答有或 ...
- 使用JS模拟出Map对象
近期要做的一个项目,支持方提供的一个Map方法,用着相当能够,功能稍有欠缺,因此我为之做了扩展,下面是代码: function Map() { this.elements = new Array(); ...
- 一个linux常见命令的列表
这是一个linux常见命令的列表. 那些有• 标记的条目,你可以直接拷贝到终端上而不需要任何修改,因此你最好开一个终端边读边剪切&拷贝. 所有的命令已在Fedora和Ubuntu下做了测试 命 ...
- Json与Java对象互转之Gson学习
Json与Java对象互转之Gson学习 请尊重他人的劳动成果.转载请注明出处:Json与Java对象互转之Gson学习 我曾在<XML,Object,Json转换之浅析Xstr ...
- 怎样使用jlink一键烧录整个flash Hi3518 a c e Hi3515 Hi3512
以jlink烧录3515为例: 1\在jlink安装文件夹"C:\Program Files\SEGGER\JLinkARM_V426b"建立批处理文件"HI3515烧写 ...
- Git双机同步
如果使用git init 初始化,当客户端仓库push内容时,服务器端仓库可以看到log,但是更新的文件不能显示,必须使用git reset --hard才能更新内容
- testlink于smarty配置和使用
于testlink于,采用smarty首先配置. 一般在过程化的编程中.创建一个smarty.inc.php的文件来配置Smarty的信息,其它文件引入就可以,目的是为了不改动smarty.class ...
- 采用SharePoint Designer将JavaScript而他们的网站页面集成的定义
采用SharePoint Designer将JavaScript而他们的网站页面集成的定义 像JavaScript这种动态脚本语言可以给你的页面震撼效果.为了加盟JavaScript要定义自己的网站页 ...