[Apache Spark源代码阅读]天堂之门——SparkContext解析
略微了解Spark源代码的人应该都知道SparkContext,作为整个Project的程序入口,其重要性不言而喻,很多大牛也在源代码分析的文章中对其做了非常多相关的深入分析和解读。这里,结合自己前段时间的阅读体会,与大家共同讨论学习一下Spark的入口对象—天堂之门—SparkContex。
SparkContex位于项目的源代码路径\spark-master\core\src\main\scala\org\apache\spark\SparkContext.scala中,源文件包括SparkContextClasss声明和其伴生对象SparkContextObject。而之所以将SparkContext称为整个程序的入口,原因在于,无论我们是从本地还是HDFS读取文件,总要首先创建一个SparkContext对象,然后基于这个SC对象,展开兴许的RDD对象创建、转换等操作。
在创建SparkContex对象的过程中,进行了一系列的初始化操作,主要包含下面内容:
- 加载配置文件SparkConf
- 创建SparkEnv
- 创建TaskScheduler
- 创建DAGScheduler
1、 加载配置文件SparkConf
在SparkConf初始化时,会将相关的配置參数传递给SparkContex,包含master、appName、sparkHome、jars、environment等信息,这里的构造函数有多中表达形式,但最归初始化的结果都是殊途同归,SparkContex获取了全部相关的本地配置和执行时配置信息。
def this(master: String, appName: String, conf: SparkConf) =
this(SparkContext.updatedConf(conf, master, appName)) def this(
master: String,
appName: String,
sparkHome: String = null,
jars: Seq[String] = Nil,
environment: Map[String, String] = Map(),
preferredNodeLocationData: Map[String, Set[SplitInfo]] = Map()) =
{
this(SparkContext.updatedConf(new SparkConf(), master, appName, sparkHome, jars, environment))
this.preferredNodeLocationData = preferredNodeLocationData
}
2、创建SparkEnv
SparkEnv是一个很重要的变量,其内包括了很多Spark执行时的重要组件(变量),包括 MapOutputTracker、ShuffleFetcher、BlockManager等,这里是通过SparkEnv类的伴生对象SparkEnv Object内的Create方法实现的。
private[spark] val env = SparkEnv.create(
conf,
"<driver>",
conf.get("spark.driver.host"),
conf.get("spark.driver.port").toInt,
isDriver = true,
isLocal = isLocal,
listenerBus = listenerBus)
SparkEnv.set(env)
3、创建TaskScheduler和DAGScheduler
以下这段代码很重要,它初始化了SparkContex里两个很关键的变量,TaskScheduler和DAGScheduler。
private[spark] var taskScheduler = SparkContext.createTaskScheduler(this, master)
@volatile private[spark] var dagScheduler: DAGScheduler = _
try {
dagScheduler = new DAGScheduler(this)
} catch {
case e: Exception => throw
new SparkException("DAGScheduler cannot be initialized due to %s".format(e.getMessage))
} // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
// constructor
taskScheduler.start()
首先,TaskScheduler是依据Spark的执行模式进行初始化的,详细代码在SparkContext中的createTaskScheduler方法中。以Standalone模式为例,它会将sc传递给TaskSchedulerImpl,并在返回Scheduler对象之前,创建SparkDeploySchedulerBackend,并将其初始化,最后返回Scheduler对象。
case SPARK_REGEX(sparkUrl) =>
val scheduler = new TaskSchedulerImpl(sc)
val masterUrls = sparkUrl.split(",").map("spark://" + _)
val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
scheduler
创建TaskScheduler对象后,再将TaskScheduler对象传參至DAGScheduler,用来创建DAGScheduler对象,
def this(sc: SparkContext, taskScheduler: TaskScheduler) = {
this(
sc,
taskScheduler,
sc.listenerBus,
sc.env.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster],
sc.env.blockManager.master,
sc.env)
}
之后,再调用其start()方法将其启动,当中包含SchedulerBackend的启动。
override def start() {
backend.start() if (!isLocal && conf.getBoolean("spark.speculation", false)) {
logInfo("Starting speculative execution thread")
import sc.env.actorSystem.dispatcher
sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL milliseconds,
SPECULATION_INTERVAL milliseconds) {
Utils.tryOrExit { checkSpeculatableTasks() }
}
}
}
除此之外,SparkContex还包含一些重要的函数方法,比如
1、runjob
runjob是spark中全部任务提交的入口,诸如rdd中的一些常见操作和变换,都会调用SparkContex的runjob方法,提交任务。
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
allowLocal: Boolean,
resultHandler: (Int, U) => Unit) {
if (dagScheduler == null) {
throw new SparkException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite)
val start = System.nanoTime
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
resultHandler, localProperties.get)
logInfo("Job finished: " + callSite + ", took " + (System.nanoTime - start) / 1e9 + " s")
rdd.doCheckpoint()
}
2、textFile
从HDFS路径读取单个数据文件,首先创建HadoopRDD,通过map操作,返回RDD对象。
3、wholeTextFiles
从HDFS某个目录读取多个文件。
4、parallelize
读取本地文件,并转换为RDD。
[Apache Spark源代码阅读]天堂之门——SparkContext解析的更多相关文章
- Spark源代码阅读笔记之DiskStore
Spark源代码阅读笔记之DiskStore BlockManager底层通过BlockStore来对数据进行实际的存储.BlockStore是一个抽象类,有三种实现:DiskStore(磁盘级别的持 ...
- Spark修炼之道(高级篇)——Spark源代码阅读:第十二节 Spark SQL 处理流程分析
作者:周志湖 以下的代码演示了通过Case Class进行表Schema定义的样例: // sc is an existing SparkContext. val sqlContext = new o ...
- Spark源代码阅读笔记之MetadataCleaner
MetadataCleaner执行定时任务周期性的清理元数据(metadata),有6种类型的元数据:MAP_OUTPUT_TRACKER.executor跟踪各个map任务输出的存储位置的数据,依据 ...
- Apache Spark源码走读之11 -- sql的解析与执行
欢迎转载,转载请注明出处,徽沪一郎. 概要 在即将发布的spark 1.0中有一个新增的功能,即对sql的支持,也就是说可以用sql来对数据进行查询,这对于DBA来说无疑是一大福音,因为以前的知识继续 ...
- ERROR actor.OneForOneStrategy: org.apache.spark.SparkContext
今天在用Spark把Kafka的数据往ES写的时候,代码一直报错,错误信息如下: 15/10/20 17:28:56 ERROR actor.OneForOneStrategy: org.apache ...
- Apache Spark 2.2.0 中文文档
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 ...
- Apache Spark源码剖析
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著 ISBN 978-7-121-25420- ...
- 《Apache Spark源码剖析》
Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了 ...
- Apache Spark 2.2.0 中文文档 - Spark 编程指南 | ApacheCN
Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functio ...
随机推荐
- Python什么是二次开发的意义?python在.net项目采用
任何人都知道python在.net该项目是做什么的啊? 辅助用途,用作"二次开发"..net站点的话python主要是CGI才用.能够用python编写B/S程序. 解释一下二次开 ...
- Python数据结构之注意事项
1.列表 列表是Python中使用最频繁的数据结构,列表提供很多函数操作,比如下标存取,分片,index,append,remove等等. 例如: list=[1,2,'hello','python ...
- Lucene全文检索的【增、删、改、查】 实例
创建索引 Lucene在进行创建索引时,根据前面一篇博客,已经讲完了大体的流程,这里再简单说下: Directory directory = FSDirectory.open("/tmp/t ...
- Google Map API V2密钥申请
之前用的都是v1,用的是MapView,好吧,仅仅能认命了.废话不再多说,開始android 的Google Maps Android API v2吧 之前參考了http://www.cnblogs. ...
- github源码开源区块链浏览器
<ignore_js_op> 帅爆了吧 https://blockexplorer.com/ github源码:https://github.com/bitcoin-blockexplor ...
- Bash ShellShock 解决办法
2014 年 9 月 24 日,Bash 惊爆严重安全漏洞,编号为 CVE-2014-6271,该漏洞将导致远程攻击者在受影响的系统上执行任意代码.GNU Bash 是一个为 GNU 计划编写的 Un ...
- 如何设置一个activity透明
1.在AndroidManifest.xml文件中设置: android:theme="@android:style/Theme.Translucent 此代码固定为全背景透明. 2.在Ac ...
- uva 11396Claw Decomposotion(二分图判定)
题目大意:给出一个简单无向图,每一个点的度为3.推断是否能将此图分解成若干爪的形式.使得每条边都仅仅出如今唯一的爪中. (点能够多次出如今爪中) 这道题实质上就是问这个图是否为二分图,dfs判定 ...
- Linux下PS命令详解 (转)
要对系统中进程进行监测控制,查看状态,内存,CPU的使用情况,使用命令:/bin/ps (1)ps :是显示瞬间进程的状态,并不动态连续: (2)top:如果想对进程运行时间监控,应该用 top 命令 ...
- Java Web整合开发(78) -- Struts 1
在Struts1.3中已经取消了<data-sources>标签,也就是说只能在1.2版中配置,因为Apache不推荐在 struts-config.xml中配置数据源.所以建议不要在st ...