hbase参数配置优化
因官方Book Performance Tuning部分章节没有按配置项进行索引,不能达到快速查阅的效果。所以我以配置项驱动,重新整理了原文,并补充一些自己的理解,如有错误,欢迎指正。
配置优化
zookeeper.session.timeout
默认值:3分钟(180000ms)
说明:RegionServer与Zookeeper间的连接超时时间。当超时时间到后,ReigonServer会被Zookeeper从RS集群清单中移除,HMaster收到移除通知后,会对这台server负责的regions重新balance,让其他存活的RegionServer接管.
调优:
这个timeout决定了RegionServer是否能够及时的failover。设置成1分钟或更低,可以减少因等待超时而被延长的failover时间。
不过需要注意的是,对于一些Online应用,RegionServer从宕机到恢复时间本身就很短的(网络闪断,crash等故障,运维可快速介入),如果调低timeout时间,反而会得不偿失。因为当ReigonServer被正式从RS集群中移除时,HMaster就开始做balance了(让其他RS根据故障机器记录的WAL日志进行恢复)。当故障的RS在人工介入恢复后,这个balance动作是毫无意义的,反而会使负载不均匀,给RS带来更多负担。特别是那些固定分配regions的场景。
hbase.zookeeper.quorum
默认值:localhost
说明:hbase所依赖的zookeeper部署
调优:
部署的zookeeper越多,可靠性就越高,但是部署只能部署奇数个,主要为了便于选出leader。最好给每个zookeeper 1G的内存和独立的磁盘,可以确保高性能。hbase.zookeeper.property.dataDir可以修改zookeeper保存数据的路径。
hbase.regionserver.handler.count
默认值:10
说明:RegionServer的请求处理IO线程数。
调优:
这个参数的调优与内存息息相关。
较少的IO线程,适用于处理单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cache的scan,均属于Big PUT)或ReigonServer的内存比较紧张的场景。
较多的IO线程,适用于单次请求内存消耗低,TPS要求非常高的场景。设置该值的时候,以监控内存为主要参考。
这里需要注意的是如果server的region数量很少,大量的请求都落在一个region上,因快速充满memstore触发flush导致的读写锁会影响全局TPS,不是IO线程数越高越好。
压测时,开启Enabling RPC-level logging,可以同时监控每次请求的内存消耗和GC的状况,最后通过多次压测结果来合理调节IO线程数。
这里是一个案例?Hadoop and HBase Optimization for Read Intensive Search Applications,作者在SSD的机器上设置IO线程数为100,仅供参考。
hbase.hregion.max.filesize
默认值:256M
说明:在当前ReigonServer上单个Reigon的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的region。
调优:
小region对split和compaction友好,因为拆分region或compact小region里的storefile速度很快,内存占用低。缺点是split和compaction会很频繁。
特别是数量较多的小region不停地split, compaction,会导致集群响应时间波动很大,region数量太多不仅给管理上带来麻烦,甚至会引发一些Hbase的bug。
一般512以下的都算小region。
大region,则不太适合经常split和compaction,因为做一次compact和split会产生较长时间的停顿,对应用的读写性能冲击非常大。此外,大region意味着较大的storefile,compaction时对内存也是一个挑战。
当然,大region也有其用武之地。如果你的应用场景中,某个时间点的访问量较低,那么在此时做compact和split,既能顺利完成split和compaction,又能保证绝大多数时间平稳的读写性能。
既然split和compaction如此影响性能,有没有办法去掉?
compaction是无法避免的,split倒是可以从自动调整为手动。
只要通过将这个参数值调大到某个很难达到的值,比如100G,就可以间接禁用自动split(RegionServer不会对未到达100G的region做split)。
再配合RegionSplitter这个工具,在需要split时,手动split。
手动split在灵活性和稳定性上比起自动split要高很多,相反,管理成本增加不多,比较推荐online实时系统使用。
内存方面,小region在设置memstore的大小值上比较灵活,大region则过大过小都不行,过大会导致flush时app的IO wait增高,过小则因store file过多影响读性能。
hbase.regionserver.global.memstore.upperLimit/lowerLimit
默认值:0.4/0.35
upperlimit说明:hbase.hregion.memstore.flush.size 这个参数的作用是当单个Region内所有的memstore大小总和超过指定值时,flush该region的所有memstore。RegionServer的flush是通过将请求添加一个队列,模拟生产消费模式来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM。
这个参数的作用是防止内存占用过大,当ReigonServer内所有region的memstores所占用内存总和达到heap的40%时,HBase会强制block所有的更新并flush这些region以释放所有memstore占用的内存。
lowerLimit说明: 同upperLimit,只不过lowerLimit在所有region的memstores所占用内存达到Heap的35%时,不flush所有的memstore。它会找一个memstore内存占用最大的region,做个别flush,此时写更新还是会被block。lowerLimit算是一个在所有region强制flush导致性能降低前的补救措施。在日志中,表现为 “** Flush thread woke up with memory above low water.”
调优:这是一个Heap内存保护参数,默认值已经能适用大多数场景。
参数调整会影响读写,如果写的压力大导致经常超过这个阀值,则调小读缓存hfile.block.cache.size增大该阀值,或者Heap余量较多时,不修改读缓存大小。
如果在高压情况下,也没超过这个阀值,那么建议你适当调小这个阀值再做压测,确保触发次数不要太多,然后还有较多Heap余量的时候,调大hfile.block.cache.size提高读性能。
还有一种可能性是?hbase.hregion.memstore.flush.size保持不变,但RS维护了过多的region,要知道 region数量直接影响占用内存的大小。
hfile.block.cache.size
默认值:0.2
说明:storefile的读缓存占用Heap的大小百分比,0.2表示20%。该值直接影响数据读的性能。
调优:当然是越大越好,如果写比读少很多,开到0.4-0.5也没问题。如果读写较均衡,0.3左右。如果写比读多,果断默认吧。设置这个值的时候,你同时要参考?hbase.regionserver.global.memstore.upperLimit?,该值是memstore占heap的最大百分比,两个参数一个影响读,一个影响写。如果两值加起来超过80-90%,会有OOM的风险,谨慎设置。
hbase.hstore.blockingStoreFiles
默认值:7
说明:在flush时,当一个region中的Store(Coulmn Family)内有超过7个storefile时,则block所有的写请求进行compaction,以减少storefile数量。
调优:block写请求会严重影响当前regionServer的响应时间,但过多的storefile也会影响读性能。从实际应用来看,为了获取较平滑的响应时间,可将值设为无限大。如果能容忍响应时间出现较大的波峰波谷,那么默认或根据自身场景调整即可。
hbase.hregion.memstore.block.multiplier
默认值:2
说明:当一个region里的memstore占用内存大小超过hbase.hregion.memstore.flush.size两倍的大小时,block该region的所有请求,进行flush,释放内存。
虽然我们设置了region所占用的memstores总内存大小,比如64M,但想象一下,在最后63.9M的时候,我Put了一个200M的数据,此时memstore的大小会瞬间暴涨到超过预期的hbase.hregion.memstore.flush.size的几倍。这个参数的作用是当memstore的大小增至超过hbase.hregion.memstore.flush.size 2倍时,block所有请求,遏制风险进一步扩大。
调优: 这个参数的默认值还是比较靠谱的。如果你预估你的正常应用场景(不包括异常)不会出现突发写或写的量可控,那么保持默认值即可。如果正常情况下,你的写请求量就会经常暴长到正常的几倍,那么你应该调大这个倍数并调整其他参数值,比如hfile.block.cache.size和hbase.regionserver.global.memstore.upperLimit/lowerLimit,以预留更多内存,防止HBase server OOM。
hbase.hregion.memstore.mslab.enabled
默认值:true
说明:减少因内存碎片导致的Full GC,提高整体性能。
调优:详见 http://kenwublog.com/avoid-full-gc-in-hbase-using-arena-allocation
hbase.client.scanner.caching
默认值:1
说明:scanner调用next方法一次获取的数据条数
调优:少的RPC是提高hbase执行效率的一种方法,理论上一次性获取越多数据就会越少的RPC,也就越高效。但是内存是最大的障碍。设置这个值的时候要选择合适的大小,一面一次性获取过多数据占用过多内存,造成其他程序使用内存过少。或者造成程序超时等错误(这个超时与hbase.regionserver.lease.period相关)。
hbase.regionserver.lease.period
默认值:60000
说明:客户端租用HRegion server 期限,即超时阀值。
调优:
这个配合hbase.client.scanner.caching使用,如果内存够大,但是取出较多数据后计算过程较长,可能超过这个阈值,适当可设置较长的响应时间以防被认为宕机。
hbase参数配置优化的更多相关文章
- Hbase 参数配置及优化
From:http://www.open-open.com/lib/view/open1346684547787.html 接触hbase已有半年的时间,查了很多资料,也参考了很多别人心得,也希望把自 ...
- 内存总是不够?HBase&GeoMesa配置优化了解一下
概况: 生产环境HBase集群内存经常处于高位(90%),而且GC之后也是内存依然处于高位,经分析内存全部由集群的regionserver进程所持有,,经常重启之后,大概3-4天就会保持在高位.由上述 ...
- HBase参数配置及说明
版本:0.94-cdh4.2.1 hbase-site.xml配置 hbase.tmp.dir 本地文件系统tmp目录,一般配置成local模式的设置一下,但是最好还是需要设置一下,因为很多文件都会默 ...
- HBase参数配置及说明(转)
版本:0.94-cdh4.2.1 hbase-site.xml配置 hbase.tmp.dir 本地文件系统tmp目录,一般配置成local模式的设置一下,但是最好还是需要设置一下,因为很多文件都会默 ...
- hbase参数配置和说明
版本:0.94-cdh4.2.1 hbase-site.xml配置 hbase.tmp.dir 本地文件系统tmp目录,一般配置成local模式的设置一下,但是最好还是需要设置一下,因为很多文件都会默 ...
- MySQL my.cnf参数配置优化详解
[b]PS:本配置文件针对Dell R710,双至强E5620.16G内存的硬件配置.CentOS -100-300w的站点,主要使用InnoDB存储引擎.其他应用环境请根据实际情况来设置优化.[/b ...
- nginx缓冲区参数配置优化
目录 一:nginx缓冲区优化 1.proxy_buffering 2.proxy_buffer_size 3.proxy_buffers 4.proxy_busy_buffers_size 5.pr ...
- MySQL优化#参数配置优化
( 1).查看mysql里的线程,观察是否有长期运行或阻塞的sql: show full processlist 经查看,没有发现相关线程,可排除该原因 (2).疑似mysql连接使用完成后没有真正释 ...
- 静默安装oracle 11g及参数配置优化详解
一.安装前准备工作1.修改主机名#vi /etc/hosts //并添加内网IP地址对应的hostname,如下127.0.0.1 localhost::1 ...
随机推荐
- 服务化改造实践 | 如何在 Dubbo 中支持 REST
什么是 REST REST 是 Roy Thomas Fielding [[1]](#fn1) 在 2000 年他的博士论文 [[2]](#fn2) “架构风格以及基于网络的软件架构设计” 中提出来的 ...
- [五]java函数式编程归约reduce概念原理 stream reduce方法详解 reduce三个参数的reduce方法如何使用
reduce-归约 看下词典翻译: 好的命名是自解释的 reduce的方法取得就是其中归纳的含义 java8 流相关的操作中,我们把它理解 "累加器",之所以加引号是因为他并不仅仅 ...
- httpclient+jsoup实现小说线上采集阅读
前言 用过老版本UC看小说的同学都知道,当年版权问题比较松懈,我们可以再UC搜索不同来源的小说,并且阅读,那么它是怎么做的呢?下面让我们自己实现一个小说线上采集阅读.(说明:仅用于技术学习.研究) 看 ...
- SpringCloud系列——Zuul 动态路由
前言 Zuul 是在Spring Cloud Netflix平台上提供动态路由,监控,弹性,安全等边缘服务的框架,是Netflix基于jvm的路由器和服务器端负载均衡器,相当于是设备和 Netflix ...
- MVC防止CSRF攻击
可能我们大多数人做web的时候不会太注意这个问题,但是这是一个很重要的一个点.我们写代码写业务的时候也应该从各方面多思考. 首先就是先简单介绍下什么是CSRF CSRF 全程是 Cross-site ...
- MySQL数据库性能优化(享学课堂听课笔记)
1.场景: 2张表A表 200W条数据,关联表B表3W条数据,AB有主外键关系. 案例1. 35S 使用关联子查询,查询时间35S 案例2. 19S 使用连表查询 (Left join ,Inner ...
- [PHP] defunct僵尸进程
1.如果子进程先于父进程退出, 同时父进程又没有调用wait/waitpid,则该子进程将成为僵尸进程 2.如果fork完就不管了可以使用 忽略子进程信号, 防止僵尸进程 pcntl_signal(S ...
- keil常用配置设置
1.设置tab键为空格4个进入Configuration->Editor,设置如下: 2.代码自动补齐进入Configuration->Editor,设置如下: 3.使用快捷键实现批量注释 ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- mybatis基础(上)
框架图 SqlSessionFactoryBuilder 通过SqlSessionFactoryBuilder创建会话工厂SqlSessionFactory 将SqlSessionFactoryBui ...