目录

前言

今天我们学习的是,有关sympy的矩阵操作

对应官方的:Matrices

官方教程

https://docs.sympy.org/latest/tutorial/matrices.html

参考网站

https://junjiecai.github.io/posts/2017/Jan/30/sympy_intro_3/

(一)矩阵的创建-Matrix()

1.说明:

Matrix(list),使用list来确定矩阵的维度。

2.源代码:

from sympy import *

# 一纬矩阵
m1 = Matrix([1, 2, 3]) #二维矩阵
m2 = Matrix([[1, -1], [3, 4], [0, 2]]) print(latex(m1))
print(latex(m2))

3.输出:

\[\left[\begin{matrix}1\\2\\3\end{matrix}\right]
\]

\[\left[\begin{matrix}1 & -1\\3 & 4\\0 & 2\end{matrix}\right]
\]

(二)常用的构造矩阵

1.说明:

可以使用sympy自带的方法来快速的构造常用矩阵

  1. 单位矩阵:eye()
  2. 零矩阵:zeros()
  3. 一矩阵:ones()
  4. 对角矩阵:diag()

2.源代码:

from sympy import *

# 单位矩阵
m1 = eye(3)
print(latex(m1)) # 零矩阵
m2 = zeros(3, 4)
print(latex(m2)) # 一矩阵
m3 = ones(3, 4)
print(latex(m3)) # 对角矩阵
m4 = diag([1, 2, 3])
print(latex(m4))

3.输出:

单位矩阵

\[\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right]
\]

零矩阵

\[\left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right]
\]

一矩阵

\[\left[\begin{matrix}1 & 1 & 1 & 1\\1 & 1 & 1 & 1\\1 & 1 & 1 & 1\end{matrix}\right]
\]

对角矩阵

\[\left[\begin{matrix}1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 3\end{matrix}\right]
\]

(三)基本操作

1.说明:

基本操作有以下几个:

  1. 获取形状:.shape()
  2. 获得单行与单列:.row(n) .col(n)
  3. 删除行与列:row_del(n) .col_del(n)
  4. 插入新行与列:.row_insert(pos, M) .col_insert(pos, M)
  5. 对矩阵求转置:m.T

2.源代码:

from sympy import *

m = Matrix([[1, -1], [3, 4], [0, 2]])
# 矩阵
print(m) # 获得形状
print(m.shape) # 获得单行与单列
print(m.row(0))
print(m.col(0)) # 删除行与列
m.row_del(0)
print("删除第一行后:", m) m.col_del(0)
print("删除第一列后:", m)
print(m) # 插入新的行与列
m2 = Matrix([[2, 3]])
print("m2:", m2) m2 = m2.row_insert(1, Matrix([[0, 4]]))
print("插入新行后:", m2) m2 = m2.col_insert(2, Matrix([9, 8]))
print("插入新列后:", m2) # 求逆矩阵
print("其逆矩阵是:", m2.T)

3.输出:

\[m = \left[\begin{matrix}1 & -1\\3 & 4\\0 & 2\end{matrix}\right]
\]

其形状是:(3, 2)

第一行是:

\[\left[\begin{matrix}1 & -1\end{matrix}\right]
\]

第一列是:

\[\left[\begin{matrix}1\\3\\0\end{matrix}\right]
\]

删除第一行后:

\[\left[\begin{matrix}3 & 4\\0 & 2\end{matrix}\right]
\]

删除第一列后:

\[\left[\begin{matrix}4\\2\end{matrix}\right]
\]

\[m2 = \left[\begin{matrix}2 & 3\end{matrix}\right]
\]

插入一行是:

\[\left[\begin{matrix}2 & 3\\0 & 4\end{matrix}\right]
\]

插入一列是:

\[\left[\begin{matrix}2 & 3 & 9\\0 & 4 & 8\end{matrix}\right]
\]

其转转置矩阵是:

\[\left[\begin{matrix}2 & 3 & 9\\0 & 4 & 8\end{matrix}\right]
\]

(四)矩阵的运算

1.加减法

(1)说明:

sympy里的加减法,直接使用+ -即可

(2)源代码:

from sympy import *

M = Matrix([1, 2, 3])

N = Matrix([4, 5, 6])

# 加法与减法

print("M+N:", M+N)
print("M-N:", M-N)

(3)输出效果:

\[M = \left[\begin{matrix}1\\2\\3\end{matrix}\right]
\]

\[N = \left[\begin{matrix}4\\5\\6\end{matrix}\right]
\]

\[M + N =\left[\begin{matrix}5\\7\\9\end{matrix}\right]
\]

\[M - N = \left[\begin{matrix}-3\\-3\\-3\end{matrix}\right]
\]

2.乘法与求逆

(1)说明:

乘法:*

求逆矩阵:M**(-1)

(2)源代码:

from sympy import *

M = Matrix([[1, -1, 1], [2, 3, -2]])
N = Matrix([[1, 2], [2, 1], [1, 1]]) # 求乘法
print(M*N) # 求逆矩阵
m = Matrix([[1, 3], [-2, 3]])
print(m**(-1))

(3)输出效果:

\[M = \left[\begin{matrix}1 & -1 & 1\\2 & 3 & -2\end{matrix}\right]
\]

\[N = \left[\begin{matrix}1 & 2\\2 & 1\\1 & 1\end{matrix}\right]
\]

\[M*N = \left[\begin{matrix}0 & 2\\6 & 5\end{matrix}\right]
\]

\[m = \left[\begin{matrix}1 & 3\\-2 & 3\end{matrix}\right]
\]

\[m^{-1} = \left[\begin{matrix}\frac{1}{3} & - \frac{1}{3}\\\frac{2}{9} & \frac{1}{9}\end{matrix}\right]
\]

(五)行列式

1.说明:

  1. 求行列式:M.det()
  2. 求阶梯矩阵:M.rref()
  3. 求特征值与向量:M.eignvals()

2.源代码:

from sympy import *

M = Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])

# 求行列式
print("行列式:", M.det()) # 求阶梯行列式
print("阶梯行列式:", M.rref()) # 求特征值与特征向量
M = Matrix([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])
print("特征值与特征向量: ", M.eigenvals())

3.输出:

\[\begin{vmatrix}1 & 0 & 1\\2 & -1 & 3\\4 & 3 & 2\end{vmatrix}=1
\]

\[M = \left[\begin{matrix}1 & 0 & 1\\2 & -1 & 3\\4 & 3 & 2\end{matrix}\right]
\]

M的阶梯矩阵:

\[\left ( \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right], \quad \left ( 0, \quad 1, \quad 2\right )\right )
\]

另一个M矩阵:

\[M = \left[\begin{matrix}3 & -2 & 4 & -2\\5 & 3 & -3 & -2\\5 & -2 & 2 & -2\\5 & -2 & -3 & 3\end{matrix}\right]
\]

其特征值是:

\[\left \{ -2 : 1, \quad 3 : 1, \quad 5 : 2\right \}
\]

(六)对角化矩阵

1.说明:

如果要对角化一个矩阵,用diagonalize()

2.源代码:

from sympy import *

M = Matrix([[3, -2,  4, -2], [5,  3, -3, -2], [5, -2,  2, -2], [5, -2, -3,  3]])

P, D = M.diagonalize()

print('矩阵M')
print(M) print('矩阵P')
print(P) print('矩阵D')
print(D) print("P*D*P**-1")
print(P*D*P**-1)

3.输出:

\[M = \left[\begin{matrix}3 & -2 & 4 & -2\\5 & 3 & -3 & -2\\5 & -2 & 2 & -2\\5 & -2 & -3 & 3\end{matrix}\right]
\]

\[ P = \left[\begin{matrix}0 & 1 & 1 & 0\\1 & 1 & 1 & -1\\1 & 1 & 1 & 0\\1 & 1 & 0 & 1\end{matrix}\right]
\]

\[D = \left[\begin{matrix}-2 & 0 & 0 & 0\\0 & 3 & 0 & 0\\0 & 0 & 5 & 0\\0 & 0 & 0 & 5\end{matrix}\right]
\]

\(PDP^{−1}=\)

\[\left[\begin{matrix}3 & -2 & 4 & -2\\5 & 3 & -3 & -2\\5 & -2 & 2 & -2\\5 & -2 & -3 & 3\end{matrix}\right]
\]

作者:Mark

日期:2019/03/18 周一

5.6Python数据处理篇之Sympy系列(六)---矩阵的操作的更多相关文章

  1. 3.6Python数据处理篇之Numpy系列(六)---Numpy随机函数

    目录 目录 前言 (一)基础的随机函数 (二)轴的随机函数 (三)概率的随机函数 目录 前言 前一段日子学了numpy,觉得无趣,没有学完,不过后来看了看matplotlib,sympy等库时,频频用 ...

  2. 4.6Python数据处理篇之Matplotlib系列(六)---plt.hist()与plt.hist2d()直方图

    目录 目录 前言 (一)直方图 (二)双直方图 目录 前言 今天我们学习的是直方图,导入的函数是: plt.hist(x=x, bins=10) 与plt.hist2D(x=x, y=y) (一)直方 ...

  3. 5.5Python数据处理篇之Sympy系列(五)---解方程

    目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...

  4. 5.4Python数据处理篇之Sympy系列(四)---微积分

    目录 目录 前言 (一)求导数-diff() 1.一阶求导-diff() 2.多阶求导-diff() 3.求偏导数-diff() (二)求积分-integrate() (三)求极限-limit() ( ...

  5. 5.3Python数据处理篇之Sympy系列(三)---简化操作

    目录 5.3简化操作 目录 前言 (一)有理数与多项式的简化 1.最简化-simplify() 2.展开-expand() 3.提公因式-factor() 4.合并同类项-ceiling() 5.简化 ...

  6. 5.2Python数据处理篇之Sympy系列(二)---Sympy的基本操作

    目录 目录 前言 (一)符号的初始化与输出设置-symbol() symbols() latex() 1.作用: 2.操作: (二)替换符号-subs(old,new) 1.说明: 2.源代码: 3. ...

  7. 5.1Python数据处理篇之Sympy系列(一)---Sympy的大体认识

    目录 目录 前言 目录 前言 sympy是python一个强大的数学符号运算第三方库,具体的功能请看下面操作 官网教程: https://docs.sympy.org/latest/tutorial/ ...

  8. 4.3Python数据处理篇之Matplotlib系列(三)---plt.plot()折线图

    目录 前言 (一)plt.plot()函数的本质 ==1.说明== ==2.源代码== ==3.展示效果== (二)plt.plot()函数缺省x时 ==1.说明== ==2.源代码== ==3.展示 ...

  9. paper 9:SVM番外篇:支持向量机系列六:Duality —— 关于 dual 问题推导的一些补充理论。

    在之前关于 support vector 的推导中,我们提到了 dual ,这里再来补充一点相关的知识.这套理论不仅适用于 SVM 的优化问题,而是对于所有带约束的优化问题都适用的,是优化理论中的一个 ...

随机推荐

  1. java代码之美(6)---guava之multimap

    guava之multimap 上一篇讲到Multiset它可以对存入相同元素做一个计数的功能,那multimap呢? 一.概述 1.基本介绍和案例说明 multimap和MultiSet的继承结果很相 ...

  2. webpack 2 系列

    webpack 2 系列 webpack 是一个强大的工具,学会通过工具来解决开发效率问题,是每一个 工程师都必备的技能之一. 那么我们来从零开始搭建一个 基于webpack 2 到 开发架子,来提升 ...

  3. 带着萌新看springboot源码09(springboot+JdbcTemplate)

    emmm.....常规开局,继续说一下废话,前面简单的说了一下spring的ioc容器创建原理(花了不少时间去看了别人的博客+查了不少资料+自己的理解),相信大家对ioc容器有了一个初步的认识了. s ...

  4. EF架构~migration对mysql数据库的迁移

    回到目录 ef这个orm工具确实强大,无论在实体建模还是在实体关系上,都发挥的很出色,而最近的code first针对数据库变更的使用更让我眼前一亮,先不说对sqlserver的支持,因为mssql本 ...

  5. [八]JavaIO之FileInputStream 与 FileOutputStream

    接下来介绍 FileInputStream  和 FileOutputStream 现在看名字应该可以看得出来: 他就是从一个文件中读取数据 或者将数据写入到一个文件中 FileInputStream ...

  6. formData批量上传的多种实现

    前言 最近项目需要批量上传附件,查了下资料,网上很多但看着一脸懵,只贴部分代码,介绍也不详细,这里记录一下自己的采坑与多种实现,以免以后忘记. 这里先介绍下FormData对象,以下内容摘自:http ...

  7. 一统江湖的大前端(2)—— Mock.js + Node.js 如何与后端潇洒分手

    <一统江湖的大前端>系列是自己的前端学习笔记,旨在介绍javascript在非网页开发领域的应用案例和发现各类好玩的js库,不定期更新.如果你对前端的理解还是写写页面绑绑事件,那你真的是有 ...

  8. 易被忽略的Python内置类型

    Python中的内置类型是我们开发中最常见的,很多人都能熟练的使用它们. 然而有一些内置类型确实不那么常见的,或者说往往会被我们忽略,所以这次的主题就是带领大家重新认识这些"不同寻常&quo ...

  9. EF操作数据库的步骤和一些简单操作语句

    这里是写给我自己做记录的,不会写成一篇很好的博客,也不会置顶,如果有朋友看到了,而且觉得里面的内容不咋的,希望见谅哈! 关于这部分内容,这里推荐一篇总结的非常好的博客,如果你点击进来了,那么请略过下面 ...

  10. Java 学习笔记 IO流与File操作

    可能你只想简单的使用,暂时不想了解太多的知识,那么请看这里,了解一下如何读文件,写文件 读文件示例代码 File file = new File("D:\\test\\t.txt" ...