UOJ129 NOI2015 寿司晚宴 数论、状压DP
数论题\(n \leq 500\)肯定是什么暴力算法……
注意到每一个数\(> \sqrt{n}\)的因子最多只有一个,这意味着\(> \sqrt{n}\)的因子之间是独立的,而只有\(\leq \sqrt{n}\)的因子之间会相互影响。而\(\leq \sqrt{n}\)的因子只有\(2,3,5,7,11,13,17,19\)总共\(8\)个,所以可以大力状压。
将\(2-n\)之间的所有数质因数分解,记录其中\(<\sqrt{n}\)的因子的出现情况,按照\(> \sqrt{n}\)的因子分类,一组一组地加入并DP。设\(dp_{i,j,k}\)表示第一个人拥有的寿司中\(<\sqrt{n}\)的因子存在情况为\(i\),第二个人拥有的寿司中\(<\sqrt{n}\)的因子存在情况为\(j\),当前计算的\(> \sqrt{n}\)的因子的存在情况为\(k\)时的方案数,转移看当前寿司分给第一个人还是第二个人。没有\(> \sqrt{n}\)因子的数先单独做一次。
总复杂度\(O(3^8n)\)
#include<iostream>
#include<cstdio>
#include<vector>
//This code is written by Itst
using namespace std;
#define int long long
const int prm[] = {2,3,5,7,11,13,17,19};
int dp[1 << 8][1 << 8][3] , N , MOD;
vector < int > Max[507];
signed main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
cin >> N >> MOD;
for(int i = 2 ; i <= N ; ++i){
int all = 0 , x = i;
for(int j = 7 ; j >= 0 ; --j){
all <<= 1;
if(x % prm[j] == 0){
while(x % prm[j] == 0)
x /= prm[j];
++all;
}
}
Max[x].push_back(all);
}
dp[0][0][0] = 1;
for(auto t : Max[1])
for(int i = (1 << 8) - 1 ; i >= 0 ; --i){
int s = ((1 << 8) - 1) ^ i , k = s;
while(1){
if(!(i & t))
dp[i][k | t][0] = (dp[i][k | t][0] + dp[i][k][0]) % MOD;
if(!(k & t))
dp[i | t][k][0] = (dp[i | t][k][0] + dp[i][k][0]) % MOD;
if(!k) break;
k = (k - 1) & s;
}
}
for(int p = 2 ; p <= N ; ++p)
if(!Max[p].empty()){
for(auto t : Max[p]){
for(int i = (1 << 8) - 1 ; i >= 0 ; --i){
int s = ((1 << 8) - 1) ^ i , k = s;
while(1){
if(!(i & t))
dp[i][k | t][1] = (dp[i][k | t][1] + dp[i][k][0] + dp[i][k][1]) % MOD;
if(!(k & t))
dp[i | t][k][2] = (dp[i | t][k][2] + dp[i][k][0] + dp[i][k][2]) % MOD;
if(!k) break;
k = (k - 1) & s;
}
}
}
for(int i = (1 << 8) - 1 ; i >= 0 ; --i){
int s = ((1 << 8) - 1) ^ i , k = s;
while(1){
dp[i][k][0] = (dp[i][k][0] + dp[i][k][1] + dp[i][k][2]) % MOD;
dp[i][k][1] = dp[i][k][2] = 0;
if(!k) break;
k = (k - 1) & s;
}
}
}
int sum = 0;
for(int i = (1 << 8) - 1 ; i >= 0 ; --i){
int s = ((1 << 8) - 1) ^ i , k = s;
while(1){
sum = (sum + dp[i][k][0]) % MOD;
if(!k) break;
k = (k - 1) & s;
}
}
cout << sum;
return 0;
}
UOJ129 NOI2015 寿司晚宴 数论、状压DP的更多相关文章
- UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)
题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...
- [NOI2015]寿司晚宴(状压dp)
为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴.小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿司,编号1,2,3,⋯,n-1,其中第种 ...
- bzoj 4197: [Noi2015]寿司晚宴【状压dp】
一个数内可能多个的质因数只有小于根号n的,500内这样的数只有8个,所以考虑状压 把2~n的数处理出小于根号500的质因数集压成s,以及大质数p(没有就是1),然后按p排序 根据题目要求,拥有一个质因 ...
- BZOJ4197 [Noi2015]寿司晚宴 【状压dp】
题目链接 BZOJ4197 题解 两个人选的数都互质,意味着两个人选择了没有交集的质因子集合 容易想到将两个人所选的质因子集合作为状态\(dp\) \(n\)以内质数很多,但容易发现\(\sqrt{n ...
- 【Luogu】P2150寿司晚宴(状压DP)
题目链接 反正……我是没什么想法了,全程看题解 (或者说自己想了半天错解) 因为大于根n的质数最多只会在一个数里出现一种,所以可以把数拆成两部分:小数的二进制集合和大数. 然后把大数一样的放到一起DP ...
- 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...
- BZOJ4197 / UOJ129 [Noi2015]寿司晚宴
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
随机推荐
- 克拉克拉(KilaKila):大规模实时计算平台架构实战
克拉克拉(KilaKila):大规模实时计算平台架构实战 一.产品背景:克拉克拉(KilaKila)是国内专注二次元.主打年轻用户的娱乐互动内容社区软件.KilaKila推出互动语音直播.短视频配音. ...
- 什么是DevOps?
一. 什么是DevOps 是什么? DevOps (英文 Development 和 Operations 的组合)是一组过程.方法与系统的统称,用于促进开发(应用程序 / 软件工程).技术运营和质量 ...
- 痞子衡嵌入式:飞思卡尔i.MX RT系列MCU启动那些事(2)- Boot配置(BOOT Pin/eFUSE)
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是飞思卡尔i.MX RT系列MCU的Boot配置. 在上一篇文章 Boot简介 里痞子衡为大家介绍了Boot基本原理以及i.MXRT Bo ...
- js for循环删除两个数组相同元素
var id = ['a','b','c','a','d','a','a','b','d','c','a','b','c','a','b','c'] var del = ['a','c']; var ...
- 基于.Net进行前端开发的技术栈发展路线(二)
前言 上一篇<我的技能树>文章分享了我的技能成长过程,还未完成,今天继续跟大家分享. 01 我的技能树 我的当前的技能树: 其中,标注为黄色旗帜的是基本掌握,标注为红色旗帜的为使用熟练.未 ...
- 第29章 保护API - Identity Server 4 中文文档(v1.0.0)
IdentityServer 默认以JWT(JSON Web令牌)格式发出访问令牌. 今天的每个相关平台都支持验证JWT令牌,这里可以找到一个很好的JWT库列表.热门库例如: ASP.NET Core ...
- Nginx 初識
今天簡單了解了一下Nginx,并在本機安裝,并簡單配置了一下,道理什麼的還不懂,就是看能不能跑起來. 1.安裝從官網下載就好,把文件隨便解壓在一個英文目錄裡面. 然後修改配置文件,修改的內容如下: 2 ...
- create-react-app 修改项目端口号及ip,设置代理
项目相关配置,需要在package.json中配置
- 2019-01-28 [日常]Beyond的歌里最多是"唏嘘"吗? - Python分词+词频
看了一个Beyond的纪录片, 提到这个. 觉得心有不甘, 于是搜集了24首歌词, 用Python做了简单分词和词频统计. 源码(包括歌词)在: program-in-chinese/study 统计 ...
- SAP MM 预留单据里的Base date和Requirement date
SAP MM 预留单据里的Base date和Requirement date Base date可以在预留创建的初始界面指定, 这个日期可以作为预留各个行项目默认的requirement date. ...