原题传送门

实际就是一道简单的树形dp

设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值

边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上公式给的是c(a+i)(b+j),而不是a(b+i)(c+j))

转移方程:f[x][i][j]=min(f[ls][i+1][j]+f[rs][i][j],f[ls][i][j]+f[rs][i][j+1]) (ls,rs表示公路/铁路的起点)

这题有点卡空间qwqwq

#include <bits/stdc++.h>
#define N 40003
#define ll long long
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register ll x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[25];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline ll Min(register ll a,register ll b)
{
return a<b?a:b;
}
int n;
int S[N],T[N],dp[N];
int a[N],b[N],c[N];
ll f[N][42][42];
inline void dfs(register int x)
{
if(x>=n)
{
for(register int i=0;i<=dp[x];++i)
for(register int j=0;j<=dp[x];++j)
f[x][i][j]=1ll*(a[x]+i)*(b[x]+j)*c[x];
return;
}
dp[S[x]]=dp[T[x]]=dp[x]+1;
dfs(S[x]),dfs(T[x]);
for(register int i=0;i<=dp[x];++i)
for(register int j=0;j<=dp[x];++j)
f[x][i][j]=Min(f[S[x]][i][j]+f[T[x]][i][j+1],f[S[x]][i+1][j]+f[T[x]][i][j]);
}
int main()
{
n=read();
for(register int i=1;i<n;++i)
{
S[i]=read(),T[i]=read();
if(S[i]<0)
S[i]=-S[i]+n-1;
if(T[i]<0)
T[i]=-T[i]+n-1;
}
for(register int i=n;i<n<<1;++i)
a[i]=read(),b[i]=read(),c[i]=read();
dfs(1);
write(f[1][0][0]);
return 0;
}

【题解】Luogu P4438 [HNOI/AHOI2018]道路的更多相关文章

  1. Luogu P4438 [HNOI/AHOI2018]道路

    题目 注意到\(n\)不大并且深度不大. 记\((u,ls_u)\)为\(L\)边,\((u,rs_u)\)为\(r\)边. 所以我们可以设\(f_{p,i,j}\)表示从根到\(p\)有\(i\)条 ...

  2. 洛谷P4438 [HNOI/AHOI2018]道路(dp)

    题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...

  3. P4438 [HNOI/AHOI2018]道路

    辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...

  4. Luogu 4438 [HNOI/AHOI2018]道路

    $dp$. 这道题最关键的是这句话: 跳出思维局限大胆设状态,设$f_{x, i, j}$表示从$x$到根要经过$i$条公路,$j$条铁路的代价,那么对于一个叶子结点,有$f_{x, i, j} = ...

  5. 【题解】Luogu P4436 [HNOI/AHOI2018]游戏

    原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...

  6. BZOJ5290 & 洛谷4438:[HNOI/AHOI2018]道路——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5290 https://www.luogu.org/problemnew/show/P4438 的确 ...

  7. 【题解】 [HNOI/AHOI2018]道路 (动态规划)

    懒得复制,戳我戳我 Solution: \(dp[i][j][k]\)以\(i\)为子树根节点,到根节点中有\(j\)条公路没修,\(k\)条铁路没修,存子树不便利和 \(dp[i][j][k]=mi ...

  8. 题解 Luogu P3623 [APIO2008]免费道路

    [APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...

  9. [HNOI/AHOI2018]道路

    Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...

随机推荐

  1. Asch PK Lisk系列之一:安全性

    在币圈,听到对数字货币的质疑之声从来没少过.为什么有人会质疑呢?他们列出了很多理由(以下四点内容摘自网络): 数字货币是依附于网络的,而中国并没有独立自主的网络技术,容易被敌对势力利用数字货币损害中国 ...

  2. es7 async/await使用

    先创建一个promise对象,里面执行一个异步函数 function fetchUser() { return new Promise((resolve, reject) => { fetch( ...

  3. 微信开发基于springboot

    0.申请一个微信公众号,记住他的appId,secret,token,accesstoken 1.创建一个springboot项目.在pom文件里面导入微信开发工具类 <dependency&g ...

  4. MongoDB - Indexes

    #explain command pp db[:zips].find(:state => 'MD').explain #List all indexes: db[:zips].indexes.e ...

  5. Vue学习记录第一天

    今天开始了Vue的学习,下面我就记录一下学习了什么. 1.什么是Vue? vue是一套基于javaScript的渐进式框架,是MVVM框架.View ——ViewModel——Model  其中Vie ...

  6. Spring Boo数据访问JDBC

    一.SpringBoot 访问JDBC原理 我们可以参考源代码:SpringBoot2中默认的数据源是使用HikariDataSource /** * Hikari DataSource config ...

  7. asp.net core 使用NLog记录日志到txt文件

    一.使用VisualStudioCode创建一个webapi项目(也可以是mvc等).一个类库(用于封装记录日志方法,当然如果使用依赖注入到控制台项目,就不需要此类库了). 二.在类库中添加NLog. ...

  8. 美团笔试(web前端)

    分为3部分: 1.逻辑推理.行测.找规律: 2.html css javascript的简单的选择题,以及数据结构,操作系统方面的知识: 3.两道编程题,第一道题关于竞赛报名,有限制的分组,输入N和M ...

  9. (转载)Oracle procedure 基本语法

    转自:http://www.cnblogs.com/wolfplan/p/4004624.html 关键字: oracle 存储过程 1.基本结构 CREATE OR REPLACE PROCEDUR ...

  10. MongoDB下,启动服务时,出现“服务没有响应控制功能”解决方法

    摘要:https://www.cnblogs.com/luoguixin/p/6291408.html 欢迎转载,若需转载请标明出处:https://www.cnblogs.com/luoguixin ...