2039: [2009国家集训队]employ人员雇佣

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 1369  Solved: 667
[Submit][Status][Discuss]

Description

作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司。这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即当经理i和经理j同时被雇佣时,经理i会对经理j做出贡献,使得所赚得的利润增加Ei,j。当然,雇佣每一个经理都需要花费一定的金钱Ai,对于一些经理可能他做出的贡献不值得他的花费,那么作为一个聪明的人,小L当然不会雇佣他。 然而,那些没有被雇佣的人会被竞争对手所雇佣,这个时候那些人会对你雇佣的经理的工作造成影响,使得所赚得的利润减少Ei,j(注意:这里的Ei,j与上面的Ei,j 是同一个)。 作为一个效率优先的人,小L想雇佣一些人使得净利润最大。你可以帮助小L解决这个问题吗?

Input

第一行有一个整数N<=1000表示经理的个数 第二行有N个整数Ai表示雇佣每个经理需要花费的金钱 接下来的N行中一行包含N个数,表示Ei,j,即经理i对经理j的了解程度。(输入满足Ei,j=Ej,i)

Output

第一行包含一个整数,即所求出的最大值。

Sample Input

3
3 5 100
0 6 1
6 0 2
1 2 0

Sample Output

1
【数据规模和约定】
20%的数据中N<=10
50%的数据中N<=100
100%的数据中 N<=1000, Ei,j<=maxlongint, Ai<=maxlongint

HINT

 

Source

[Submit][Status][Discuss]

建图求最小割:

假设一开始获得了所有的Wij,ans = ΣWij。

加入使用一个经理,产生代价是Costi,从源点向该点连Costi的边。

两个经理之间互相影响,如果在两人之间断开,及选取两人中的一个,那么将失去一开始得到的Wij,并且还会损失Wij的竞争代价,所以连边2*Wij。

我们也可以直接选择放弃一个经理,失去所有其本算在答案中的贡献,即ΣWij,其中j=1..n。

最终ans - 最小割就是答案。

 #include <cstdio>
#include <cstring> const int siz = ;
const int inf = ; int n; int tot;
int s, t;
int hd[siz];
int to[siz];
int fl[siz];
int nt[siz]; inline void add(int u, int v, int f)
{
// printf("add %d %d %d\n", u, v, f);
nt[tot] = hd[u]; to[tot] = v; fl[tot] = f; hd[u] = tot++;
nt[tot] = hd[v]; to[tot] = u; fl[tot] = ; hd[v] = tot++;
} int dep[siz]; inline bool bfs(void)
{
static int que[siz];
static int head, tail; memset(dep, , sizeof(dep));
dep[que[head = ] = s] = tail = ; while (head != tail)
{
int u = que[head++], v;
for (int i = hd[u]; ~i; i = nt[i])
if (fl[i] && !dep[v = to[i]])
dep[que[tail++] = v] = dep[u] + ;
} return dep[t];
} int cur[siz]; inline int min(int a, int b)
{
return a < b ? a : b;
} int dfs(int u, int f)
{
if (u == t || !f)
return f; int used = , flow, v; for (int i = hd[u]; ~i; i = nt[i])
if (fl[i] && dep[v = to[i]] == dep[u] + )
{
flow = dfs(v, min(f - used, fl[i]));
used += flow;
fl[i] -= flow;
fl[i ^ ] += flow;
if (used == f)
return f;
if (fl[i])
cur[u] = i;
} if (!used)
dep[u] = ; return used;
} inline int maxFlow(void)
{
int maxFlow = , newFlow; while (bfs())
{
for (int i = s; i <= t; ++i)
cur[i] = hd[i]; while (newFlow = dfs(s, inf))
maxFlow += newFlow;
} return maxFlow;
} int ans;
int sum; signed main(void)
{
scanf("%d", &n); s = , t = n + ; memset(hd, -, sizeof(hd)); for (int i = , x; i <= n; ++i)
scanf("%d", &x), add(s, i, x); for (int i = ; i <= n; ++i)
{
sum = ; for (int j = ; j <= n; ++j)
{
int x; scanf("%d", &x);
ans += x;
sum += x;
if (i != j)
add(i, j, x << );
} add(i, t, sum);
} printf("%d\n", ans - maxFlow());
}

@Author: YouSiki

BZOJ 2039: [2009国家集训队]employ人员雇佣的更多相关文章

  1. BZOJ 2039 [2009国家集训队]employ人员雇佣 网络流

    链接 BZOJ 2039 题解 这题建图好神,自己瞎搞了半天,最后不得不求教了企鹅学长的博客,,,,发现建图太神了!! s向每个人连sum(e[i][x]) 的边,每个人向T连a[i]的边.两两人之间 ...

  2. bzoj 2039 [2009国家集训队]employ人员雇佣——二元关系

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2039 用最小割看.对于一组关系 i , j ,如果都选,收益 2*Ei,j,可以看作0,作为 ...

  3. bzoj 2039: [2009国家集训队]employ人员雇佣【最小割】

    一开始在https://www.cnblogs.com/lokiii/p/10770919.html基础上连(i,j,b[i][j])建了个极丑的图T掉了--把dinic换成isap勉强能卡过 首先因 ...

  4. 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1511  Solved: 728 Descri ...

  5. 2039: [2009国家集训队]employ人员雇佣

    任意门 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即 ...

  6. BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

    BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...

  7. 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割

    [BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...

  8. BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...

  9. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

随机推荐

  1. Mac下安装ElasticSearch

    简单记录一下安装ES的过程,给小小白们提供一下参考: 下载安装包 https://www.elastic.co/downloads/elasticsearch建议下载2.3.2版本,最新的5.0.0版 ...

  2. SVG入门

    这部分包括三个内容: 1. 基本图形 2. 基本属性 3. 基础操作API 基本图形 名称 描述 参数 图示 rect 定义一个矩形 x="矩形的左上角的x轴" y="矩 ...

  3. Sencha, the nightmare!

    基础 创建一个应用程序 sencha -sdk /path/to/sdk generate app %name% /path/to/app 跑起来 cd /path/to/app sencha app ...

  4. 使用IdleTest进行TDD单元测试驱动开发演练(3) 之 ASP.NET MVC

    一.[前言] (1)本文将用到IOC框架Unity,可参照<Unity V3 初步使用 —— 为我的.NET项目从简单三层架构转到IOC做准备>(2)本文的解决方案是基于前述<使用I ...

  5. 浅析匿名函数、lambda表达式、闭包(closure)区别与作用

    浅析匿名函数.lambda表达式.闭包(closure)区别与作用 所有的主流编程语言都对函数式编程有支持,比如c++11.python和java中有lambda表达式.lua和JavaScript中 ...

  6. iOS --SQL的增加、删除、查找、修改

    iOS对于数据库的操作:增加.删除.查找.修改 首先需要创建一个数据库:本程序的数据库是在火狐浏览器里的插件里写的微量型数据库 火狐找查找SQLite Manager的步骤: 第一步:在工具栏找到附加 ...

  7. C# List 排序各种用法与比较

    下面介绍各种List的sort的用法与比较 首先,我们建一个People的实体,有name.age.sex的属性,我们要排序的字段是年龄age 新建一个实体类 public class People ...

  8. 基于SVN的项目管理——集中与分散

    我们在此处不讨论 GIT 比 SVN 好多少,也不讨论 Maven 和 Gradle 哪个好用,基于现有的开发环境,大多数公司还是采用 SVN + Maven 来进行项目管理——因为这已经满足了大多数 ...

  9. Markdown 新手指南

    Markdown 新手指南   「简书」作为一款「写作软件」在诞生之初就支持了 Markdown,Markdown 是一种「电子邮件」风格的「标记语言」,我们强烈推荐所有写作者学习和掌握该语言.为什么 ...

  10. 【推荐】CentOS安装PHP-5.6.4+扩展安装+安全配置+性能配置

    注:以下所有操作均在CentOS 6.5 x86_64位系统下完成. #准备工作# 前段时间PHP官方发布了一个重要的安全升级公告,修复了两个unserialize函数的严重漏洞,目前受影响的版本有: ...