1. 写在前面

Flink被誉为第四代大数据计算引擎组件,即可以用作基于离线分布式计算,也可以应用于实时计算。Flink的核心是转化为流进行计算。Flink三个核心:Source,Transformation,Sink。其中Source即为Flink计算的数据源,Transformation即为进行分布式流式计算的算子,也是计算的核心,Sink即为计算后的数据输出端。Flink Source原生支持包括Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而Flink Sink写原生也只支持类似Redis,Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而对于写入关系型数据库或Flink不支持的组件中,需要借助RichSourceFunction去实现,但这部分性能是比原生的差些,虽然Flink不建议这么做,但在大数据处理过程中,由于业务或技术架构的复杂性,有些特定的场景还是需要这样做,本篇博客就是介绍如何通过Flink RichSourceFunction来写关系型数据库,这里以写mysql为例。

2. 引入依赖的jar包

flink基础包

flink-jdbc包

mysql-jdbc包

3. 继承RichSourceFunction包将jdbc封装读mysql

package com.run;

import java.sql.DriverManager;
import java.sql.ResultSet; import org.apache.flink.api.java.tuple.Tuple10;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction; import com.mysql.jdbc.Connection;
import com.mysql.jdbc.PreparedStatement; public class Flink2JdbcReader extends
RichSourceFunction<Tuple10<String, String, String, String, String, String, String, String, String, String>> {
private static final long serialVersionUID = 3334654984018091675L; private Connection connect = null;
private PreparedStatement ps = null; /*
* (non-Javadoc)
*
* @see org.apache.flink.api.common.functions.AbstractRichFunction#open(org.
* apache.flink.configuration.Configuration) to use open database connect
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
Class.forName("com.mysql.jdbc.Driver");
connect = (Connection) DriverManager.getConnection("jdbc:mysql://192.168.21.11:3306", "root", "flink");
ps = (PreparedStatement) connect
.prepareStatement("select col1,col2,col3,col4,col5,col6,col7,col8,col9,col10 from flink.test_tb");
} /*
* (non-Javadoc)
*
* @see
* org.apache.flink.streaming.api.functions.source.SourceFunction#run(org.
* apache.flink.streaming.api.functions.source.SourceFunction.SourceContext)
* to use excuted sql and return result
*/
@Override
public void run(
SourceContext<Tuple10<String, String, String, String, String, String, String, String, String, String>> collect)
throws Exception {
ResultSet resultSet = ps.executeQuery();
while (resultSet.next()) {
Tuple10<String, String, String, String, String, String, String, String, String, String> tuple = new Tuple10<String, String, String, String, String, String, String, String, String, String>();
tuple.setFields(resultSet.getString(1), resultSet.getString(2), resultSet.getString(3),
resultSet.getString(4), resultSet.getString(5), resultSet.getString(6), resultSet.getString(7),
resultSet.getString(8), resultSet.getString(9), resultSet.getString(10));
collect.collect(tuple);
} } /*
* (non-Javadoc)
*
* @see
* org.apache.flink.streaming.api.functions.source.SourceFunction#cancel()
* colse database connect
*/
@Override
public void cancel() {
try {
super.close();
if (connect != null) {
connect.close();
}
if (ps != null) {
ps.close();
}
} catch (Exception e) {
e.printStackTrace();
} } }

4. 继承RichSourceFunction包将jdbc封装写mysql

package com.run;

import java.sql.DriverManager;

import org.apache.flink.api.java.tuple.Tuple10;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction; import com.mysql.jdbc.Connection;
import com.mysql.jdbc.PreparedStatement; public class Flink2JdbcWriter extends
RichSinkFunction<Tuple10<String, String, String, String, String, String, String, String, String, String>> {
private static final long serialVersionUID = -8930276689109741501L; private Connection connect = null;
private PreparedStatement ps = null; /*
* (non-Javadoc)
*
* @see org.apache.flink.api.common.functions.AbstractRichFunction#open(org.
* apache.flink.configuration.Configuration) get database connect
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
Class.forName("com.mysql.jdbc.Driver");
connect = (Connection) DriverManager.getConnection("jdbc:mysql://192.168.21.11:3306", "root", "flink");
ps = (PreparedStatement) connect.prepareStatement("insert into flink.test_tb1 values (?,?,?,?,?,?,?,?,?,?)");
} /*
* (non-Javadoc)
*
* @see
* org.apache.flink.streaming.api.functions.sink.SinkFunction#invoke(java.
* lang.Object,
* org.apache.flink.streaming.api.functions.sink.SinkFunction.Context) read
* data from flink DataSet to database
*/
@Override
public void invoke(Tuple10<String, String, String, String, String, String, String, String, String, String> value,
Context context) throws Exception {
ps.setString(1, value.f0);
ps.setString(2, value.f1);
ps.setString(3, value.f2);
ps.setString(4, value.f3);
ps.setString(5, value.f4);
ps.setString(6, value.f5);
ps.setString(7, value.f6);
ps.setString(8, value.f7);
ps.setString(9, value.f8);
ps.setString(10, value.f9);
ps.executeUpdate();
} /*
* (non-Javadoc)
*
* @see org.apache.flink.api.common.functions.AbstractRichFunction#close()
* close database connect
*/
@Override
public void close() throws Exception {
try {
super.close();
if (connect != null) {
connect.close();
}
if (ps != null) {
ps.close();
}
} catch (Exception e) {
e.printStackTrace();
}
}
}

4. 代码解释

对于Flink2JdbcReader的读

里面有三个方法open,run,cancel,其中open方法是建立与关系型数据库的链接,这里其实就是普通的jdbc链接及mysql的地址,端口,库等信息。run方法是读取mysql数据转化为Flink独有的Tuple集合类型,可以根据代码看出其中的规律和Tuple8,Tuple9,Tuple10代表什么含义。cancel就很简单了关闭数据库连接

对于Flink2JdbcWriter的写

里面有三个方法open,invoke,close,其中open方法是建立与关系型数据库的链接,这里其实就是普通的jdbc链接及mysql的地址,端口,库等信息。invoke方法是将flink的数据类型插入到mysql,这里的写法与在web程序中写jdbc插入数据不太一样,因为flink独有的Tuple,可以根据代码看出其中的规律和Tuple8,Tuple9,Tuple10代表什么含义。close关闭数据库连接

5. 测试:读mysql数据并继续写入mysql

package com.run;

import java.util.Date;

import org.apache.flink.api.java.tuple.Tuple10;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class FlinkReadDbWriterDb {
public static void main(String[] args) throws Exception {。
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple10<String, String, String, String, String, String, String, String, String, String>> dataStream = env
.addSource(new Flink2JdbcReader()); // tranfomat dataStream.addSink(new Flink2JdbcWriter());
env.execute("Flink cost DB data to write Database"); }
}

6. 总结

从测试代码中可以很清晰的看出Flink的逻辑:Source->Transformation->Sink,可以在addSource到addSink之间加入我们的业务逻辑算子。同时这里必须注意env.execute("Flink cost DB data to write Database");这个必须有而且必须要放到结尾,否则整个代码是不会执行的,至于为什么在后续的博客会讲

Flink RichSourceFunction应用,读关系型数据(mysql)数据写入关系型数据库(mysql)的更多相关文章

  1. MYSQL添加新用户 MYSQL为用户创建数据库 MYSQL为新用户分配权限

    1.新建用户 //登录MYSQL @>mysql -u root -p @>密码 //创建用户 mysql> insert into mysql.user(Host,User,Pas ...

  2. ODP方式,大批量数据写入ORACLE数据库

    项目中在同步数据的时候,需要把获得的数据DataTable,写入oracle数据库 因为System.Data.OracleClient写入方式写入大批量数据特别慢,改用Oracle.DataAcce ...

  3. MySQL常用命令(数据库,表相关的命令)

    数据库相关命令 显示数据库列表 mysql> SHOW  DATABASES; 创建数据库 mysql> CREATE  DATABASE  库名; 如下,创建一个名为crashcours ...

  4. MySQL(一) -- MySQL学习路线、数据库的基础、关系型数据库、关键字说明、SQL、MySQL数据库、MySQL服务器对象、SQL的基本操作、库操作、表操作、数据操作、中文数据问题、 校对集问题、web乱码问题

    1 MySQL学习路线 基础阶段:MySQL数据库的基本操作(增删改查),以及一些高级操作(视图.触发器.函数.存储过程等). 优化阶段:如何提高数据库的效率,如索引,分表等. 部署阶段:如何搭建真实 ...

  5. Hadoop生态组件Hive,Sqoop安装及Sqoop从HDFS/hive抽取数据到关系型数据库Mysql

    一般Hive依赖关系型数据库Mysql,故先安装Mysql $: yum install mysql-server mysql-client [yum安装] $: /etc/init.d/mysqld ...

  6. Python3爬虫(九) 数据存储之关系型数据库MySQL

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 关系型数据库关系型数据库是基于关系模型的数据库,而关系模型是通过二维表来保存的,所以关系型数据库的存储方式就是行列 ...

  7. Flink 实践教程 - 入门(4):读取 MySQL 数据写入到 ES

    ​作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接. ...

  8. 【搜索引擎】Solr最新安装以及通过关系型数据库(MySQL,Oracle,PostgreSQL)导入数据

    版本号 最新的solr版本 : Solr 8.1.1下载地址:https://lucene.apache.org/solr/downloads.html solr-8.1.0.tgz for Linu ...

  9. 【大数据应用技术】作业九|安装关系型数据库MySQL 安装大数据处理框架Hadoop

    本次作业的要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3161 1.安装MySql 按ctrl+alt+t打开终端窗口,安 ...

随机推荐

  1. day049--jQuery文档操作示例

    DOM操作(CRUD增改查删) 创建元素 $('span') // 创建一个span标签 后置插入操作   append(), appendTo() <!DOCTYPE html> < ...

  2. jQuery使用(十二):工具方法之ajax的无忧回调(优雅的代码风格)

    jQuery.ajax()方法的应用 jQuery.ajax()的无忧回调(优雅的代码风格) 一.jQuery.ajax()方法的应用 jQuery.ajax()实质上就是在ajax的基础上进行了封装 ...

  3. JGUI源码:组件及函数封装方法(7)

    以Accordion为例1.在base.js定义一个对象,这样可以和JQuery对象区分开,用户使用组件时比较清晰一点,也可以在这里引用多个库. var JGUI = J = { version : ...

  4. enumerate列表继续前文的计数

    \documentclass[a4paper]{article} \usepackage{enumitem} % load the package \begin{document} \section{ ...

  5. 使用scrapy选择器selector解析获取百度结果

    0x00 概述 需要成功安装scrapy,安装方法与本文无关,不在这多说. 0x01 配置settings 由于百度对于user-agent进行验证,所以需要添加. settings.py中找到DEF ...

  6. 学习string,stringBuffer时遇到的问题

    今天学习string和stringBuffer.了解了两者的区别,然后去看java api都有啥方法.stringBuffer类有indexOf方法,于是写了下面的代码 String str = &q ...

  7. jQuery禁用、开启鼠标滚轮事件

    1.禁用鼠标滚轮事件 $(document).bind('mousewheel', function(event, delta) {return false;}); 2.开启鼠标滚轮事件,直接解绑事件 ...

  8. java平台学习笔记

    java程序从编写源码开始到程序执行一共有三个阶段,编写期,编译期,运行期. 通常,人们都希望自己的程序更快(不仅仅是执行更快,也有编写更快),因此java在不断更新. java源码先通过javac编 ...

  9. egret中三种单利的写法。

    1 普通的单例写法 缺点:每个单例类里都要写instance和getInstance. class Single{ private static instance:Single; public sta ...

  10. 通过配置文件新建solr的core

    目录solr-7.5.0\server\solr 1.  新建文件夹 test-core 2. 在文件夹test-core下新建core.properties name=test-core confi ...