Time travel HDU - 4418(高斯消元)
Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to finish a mission by traveling through time with the Time machine. The Time machine can take agent K to some point (0 to n-1) on the timeline and when he gets to the end of the time line he will come back (For example, there are 4 time points, agent K will go in this way 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, ...). But when agent K gets into the Time machine he finds it has broken, which make the Time machine can't stop (Damn it!). Fortunately, the time machine may get recovery and stop for a few minutes when agent K arrives at a time point, if the time point he just arrive is his destination, he'll go and finish his mission, or the Time machine will break again. The Time machine has probability Pk% to recover after passing k time points and k can be no more than M. We guarantee the sum of Pk is 100 (Sum(Pk) (1 <= k <= M)==100). Now we know agent K will appear at the point X(D is the direction of the Time machine: 0 represents going from the start of the timeline to the end, on the contrary 1 represents going from the end. If x is the start or the end point of the time line D will be -1. Agent K want to know the expectation of the amount of the time point he need to pass before he arrive at the point Y to finish his mission.
If finishing his mission is impossible output "Impossible !" (no quotes )instead.
InputThere is an integer T (T <= 20) indicating the cases you have to solve. The first line of each test case are five integers N, M, Y, X .D (0< N,M <= 100, 0 <=X ,Y < 100 ). The following M non-negative integers represent Pk in percentile.
OutputFor each possible scenario, output a floating number with 2 digits after decimal point
If finishing his mission is impossible output one line "Impossible !"
(no quotes )instead.
Sample Input
2
4 2 0 1 0
50 50
4 1 0 2 1
100
Sample Output
8.14
2.00 一个黑衣人在0到n-1的n个时间点里无限穿梭,他需要从 x 位置到 y 位置,时间穿梭器每传送 k 次,最多M次,就有 Pk 的概率停下一次,如果停下的位置正好是 y, 那么黑衣人到达目的地。
然后给出的 N 个点,M次传送次数,目的地y,出发地x,方向D, D为 0 时从左到右走,D为 1 时,从右往左走。
对于方向,可以把 N 个点翻倍,比如 N = 5,可以看成0 1 2 3 4 5 4 3 2 1, 假设我x = 1, D = 0,那么就是从下标 1 开始走,如果x = 1, D = 1,那么我就是从下标 2*n-2-1 开始走,并且这么走,都只要看成往右走。
然后对开始位置进行 bfs ,把可以从开始位置走的点找出来,并且对这些点标号。
然后对于列方程。令dp[i] 表示从 i 位置走出的期望。
1. i == y, dp[i] = 0.
2. i != y, dp[i] = Σ((dp[i+j] + j) * p[j])
= Σ(dp[i+j] * p[j]) + p[j] * j
即 dp[i] - Σ(dp[i+j] * p[j]) = p[j] * j
通过这个式子对可以走到的点列方程
列方程时 a[has[i]][has[v]] -= p[j]; 和 a[has[i]][has[v]] = -p[j]; 是不一样的,因为我需要对 n 取模,那么我的 v 位置可能多次走到。
然后用高斯消元求出 x[has[x]] 就可以了。
/*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e2 + ;
const int maxm = 1e5 + ;
const int mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m;
int cas, tol, T;
int src, des; int has[maxn];
double x[maxn];
double p[maxn];
double a[maxn][maxn]; void init() {
tol = ;
mes(a, );
mes(x, );
mes(p, );
mes(has, -);
} void bfs(int src) {
queue<int> q;
while(!q.empty())
q.pop();
q.push(src);
has[src] = tol++;
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i=; i<=m; i++) {
if(fabs(p[i]) < eps) continue;
int v = (u + i) % n;
if(has[v] == -) {
has[v] = tol++;
q.push(v);
}
}
}
} void build() {
for(int i=; i<n; i++) {
if(has[i] == -) continue;
double ans = 0.0;
a[has[i]][has[i]] = 1.0;
if(i == des || i == n-des) {
x[has[i]] = ;
continue;
}
for(int j=; j<=m; j++) {
int v = (i + j) % n;
a[has[i]][has[v]] -= p[j];
ans += j * p[j];
}
x[has[i]] = ans;
}
} int gauss(int equ, int var) {
int i, j, k, col, max_r;
for(k=, col=; k<equ && col<var; k++, col++) {
max_r = k;
for(i=k+; i<equ; i++) {
if(fabs(a[i][col]) > fabs(a[max_r][col])) {
max_r = i;
}
}
if(fabs(a[max_r][col] < eps)) return ;
if(k != max_r) {
swap(a[k], a[max_r]);
swap(x[k], x[max_r]);
}
x[k] /= a[k][col];
for(j=col+; j<var; j++) {
a[k][j] /= a[k][col];
}
a[k][col] = ;
for(i=; i<equ; i++) {
if(i != k) {
x[i] -= x[k] * a[i][k];
for(j=col+; j<var; j++) {
a[i][j] -= a[k][j] * a[i][col];
}
a[i][col] = ;
}
}
}
return ;
} int main() {
scanf("%d", &T);
while(T--) {
init();
int D;
scanf("%d%d%d%d%d", &n, &m, &des, &src, &D);
for(int i=; i<=m; i++) {
scanf("%lf", &p[i]);
p[i] /= ;
}
if(src == des) {
printf("0.00\n");
continue;
}
n = * n - ;
if(D == )
src = n - src;
bfs(src);
if(has[des] == - && has[n - des] == -) {
printf("Impossible !\n");
continue;
}
build();
if(gauss(tol, tol)) {
printf("%.2f\n", x[has[src]]);
} else {
printf("Impossible !\n");
}
}
return ;
}
Time travel HDU - 4418(高斯消元)的更多相关文章
- [置顶] hdu 4418 高斯消元解方程求期望
题意: 一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问 ...
- HDU 4418 高斯消元解决概率期望
题目大意: 一个人在n长的路径上走到底再往回,走i步停下来的概率为Pi , 求从起点开始到自己所希望的终点所走步数的数学期望 因为每个位置都跟后m个位置的数学期望有关 E[i] = sigma((E[ ...
- hdu 4418 高斯消元求期望
Time travel Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 2827 高斯消元
模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @A ...
- HDU-4418 Time travel 概率DP,高斯消元
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4418 题意:简单来说就是给你1个环(n - 1 , n - 2 …… 0 ,1 , 2 , 3 …… ...
- hdu 3915 高斯消元
http://acm.hdu.edu.cn/showproblem.php?pid=3915 这道题目是和博弈论挂钩的高斯消元.本题涉及的博弈是nim博弈,结论是:当先手处于奇异局势时(几堆石子数相互 ...
- HDU 3359 高斯消元模板题,
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 ...
- HDU4418 Time travel(期望dp 高斯消元)
题意 题目链接 Sol mdzz这题真的太恶心了.. 首先不难看出这就是个高斯消元解方程的板子题 \(f[x] = \sum_{i = 1}^n f[to(x + i)] * p[i] + ave\) ...
- hdu 5088 高斯消元n堆石子取k堆石子使剩余异或值为0
http://acm.hdu.edu.cn/showproblem.php?pid=5088 求能否去掉几堆石子使得nim游戏胜利 我们可以把题目转化成求n堆石子中的k堆石子数异或为0的情况数.使用x ...
- HDU 3364 高斯消元
Lanterns Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
随机推荐
- C# 动态生成word文档
本文以一个简单的小例子,简述利用C#语言开发word表格相关的知识,仅供学习分享使用,如有不足之处,还请指正. 在工程中引用word的动态库 在项目中,点击项目名称右键-->管理NuGet程序包 ...
- ionic获取表单input的值的两种方法
1.参数传递法 直接在input处使用 #定义参数的name值,注意在ts中参数的类型 html页面: <ion-input type="text" placeholder= ...
- asp.net core webapi/website+Azure DevOps+GitHub+Docker
asp.net core webapi/website+Azure DevOps+GitHub+Docker 新春开篇作,主要写一下关于asp.net core web/api 2.2 项目借助dev ...
- django源码分析 python manage.py runserver
django是一个快速开发web应用的框架, 笔者也在django框架上开发不少web应用,闲来无事,就想探究一下django底层到底是如何实现的,本文记录了笔者对django源码的分析过程 I be ...
- 推荐一款MongoDB的客户端管理工具--nosqlbooster
今天给大家推荐一款MongoDB的客户端工具--nosqlbooster,这个也是我工作中一直使用的连接管理MongoDB的工具.这个工具还有个曾用名--mongobooster.nosqlboost ...
- UltraEdit 注册机
IDM-All-Products-KeyGen-v3.6UltraEdit 注册机 1.断开网络连接,运行UltraEdit软件后,点击“帮助”—“注册/激活”; 2.许可证ID填写“zd423”.密 ...
- XML详解一XML语法
XML指可扩展标记语言很类似 HTML,被设计用来传输和存储数据而非显示数据,XML标签没有被预定义需要自行定义标签,标签具有自我描述性,同时XML也是 W3C 的推荐标准. 先来写一个XML脚本de ...
- jest 自动化测试
概述 jest 是 facebook 开源的,用来进行单元测试的框架,可以测试 javascipt 和 react. 单元测试各种好处已经被说烂了,这里就不多扯了.重点要说的是,使用 jest, 可以 ...
- 阿里Canal安装和代码示例
Canal的简单使用 canal可以用来监控数据库数据的变化,从而获得新增数据,或者修改的数据,用于实际工作中,比较实用,特此记录一下 Canal简介 canal是应阿里巴巴存在杭州和美国的双机房部署 ...
- 012_call和apply区别
一. function fn(a,b) { console.log(this); } fn.call(null,1,2); //call为参数方式 fn.apply(null,[1,2]); //ap ...