Time travel HDU - 4418(高斯消元)
Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to finish a mission by traveling through time with the Time machine. The Time machine can take agent K to some point (0 to n-1) on the timeline and when he gets to the end of the time line he will come back (For example, there are 4 time points, agent K will go in this way 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, ...). But when agent K gets into the Time machine he finds it has broken, which make the Time machine can't stop (Damn it!). Fortunately, the time machine may get recovery and stop for a few minutes when agent K arrives at a time point, if the time point he just arrive is his destination, he'll go and finish his mission, or the Time machine will break again. The Time machine has probability Pk% to recover after passing k time points and k can be no more than M. We guarantee the sum of Pk is 100 (Sum(Pk) (1 <= k <= M)==100). Now we know agent K will appear at the point X(D is the direction of the Time machine: 0 represents going from the start of the timeline to the end, on the contrary 1 represents going from the end. If x is the start or the end point of the time line D will be -1. Agent K want to know the expectation of the amount of the time point he need to pass before he arrive at the point Y to finish his mission.
If finishing his mission is impossible output "Impossible !" (no quotes )instead.
InputThere is an integer T (T <= 20) indicating the cases you have to solve. The first line of each test case are five integers N, M, Y, X .D (0< N,M <= 100, 0 <=X ,Y < 100 ). The following M non-negative integers represent Pk in percentile.
OutputFor each possible scenario, output a floating number with 2 digits after decimal point
If finishing his mission is impossible output one line "Impossible !"
(no quotes )instead.
Sample Input
2
4 2 0 1 0
50 50
4 1 0 2 1
100
Sample Output
8.14
2.00 一个黑衣人在0到n-1的n个时间点里无限穿梭,他需要从 x 位置到 y 位置,时间穿梭器每传送 k 次,最多M次,就有 Pk 的概率停下一次,如果停下的位置正好是 y, 那么黑衣人到达目的地。
然后给出的 N 个点,M次传送次数,目的地y,出发地x,方向D, D为 0 时从左到右走,D为 1 时,从右往左走。
对于方向,可以把 N 个点翻倍,比如 N = 5,可以看成0 1 2 3 4 5 4 3 2 1, 假设我x = 1, D = 0,那么就是从下标 1 开始走,如果x = 1, D = 1,那么我就是从下标 2*n-2-1 开始走,并且这么走,都只要看成往右走。
然后对开始位置进行 bfs ,把可以从开始位置走的点找出来,并且对这些点标号。
然后对于列方程。令dp[i] 表示从 i 位置走出的期望。
1. i == y, dp[i] = 0.
2. i != y, dp[i] = Σ((dp[i+j] + j) * p[j])
= Σ(dp[i+j] * p[j]) + p[j] * j
即 dp[i] - Σ(dp[i+j] * p[j]) = p[j] * j
通过这个式子对可以走到的点列方程
列方程时 a[has[i]][has[v]] -= p[j]; 和 a[has[i]][has[v]] = -p[j]; 是不一样的,因为我需要对 n 取模,那么我的 v 位置可能多次走到。
然后用高斯消元求出 x[has[x]] 就可以了。
/*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e2 + ;
const int maxm = 1e5 + ;
const int mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m;
int cas, tol, T;
int src, des; int has[maxn];
double x[maxn];
double p[maxn];
double a[maxn][maxn]; void init() {
tol = ;
mes(a, );
mes(x, );
mes(p, );
mes(has, -);
} void bfs(int src) {
queue<int> q;
while(!q.empty())
q.pop();
q.push(src);
has[src] = tol++;
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i=; i<=m; i++) {
if(fabs(p[i]) < eps) continue;
int v = (u + i) % n;
if(has[v] == -) {
has[v] = tol++;
q.push(v);
}
}
}
} void build() {
for(int i=; i<n; i++) {
if(has[i] == -) continue;
double ans = 0.0;
a[has[i]][has[i]] = 1.0;
if(i == des || i == n-des) {
x[has[i]] = ;
continue;
}
for(int j=; j<=m; j++) {
int v = (i + j) % n;
a[has[i]][has[v]] -= p[j];
ans += j * p[j];
}
x[has[i]] = ans;
}
} int gauss(int equ, int var) {
int i, j, k, col, max_r;
for(k=, col=; k<equ && col<var; k++, col++) {
max_r = k;
for(i=k+; i<equ; i++) {
if(fabs(a[i][col]) > fabs(a[max_r][col])) {
max_r = i;
}
}
if(fabs(a[max_r][col] < eps)) return ;
if(k != max_r) {
swap(a[k], a[max_r]);
swap(x[k], x[max_r]);
}
x[k] /= a[k][col];
for(j=col+; j<var; j++) {
a[k][j] /= a[k][col];
}
a[k][col] = ;
for(i=; i<equ; i++) {
if(i != k) {
x[i] -= x[k] * a[i][k];
for(j=col+; j<var; j++) {
a[i][j] -= a[k][j] * a[i][col];
}
a[i][col] = ;
}
}
}
return ;
} int main() {
scanf("%d", &T);
while(T--) {
init();
int D;
scanf("%d%d%d%d%d", &n, &m, &des, &src, &D);
for(int i=; i<=m; i++) {
scanf("%lf", &p[i]);
p[i] /= ;
}
if(src == des) {
printf("0.00\n");
continue;
}
n = * n - ;
if(D == )
src = n - src;
bfs(src);
if(has[des] == - && has[n - des] == -) {
printf("Impossible !\n");
continue;
}
build();
if(gauss(tol, tol)) {
printf("%.2f\n", x[has[src]]);
} else {
printf("Impossible !\n");
}
}
return ;
}
Time travel HDU - 4418(高斯消元)的更多相关文章
- [置顶] hdu 4418 高斯消元解方程求期望
题意: 一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问 ...
- HDU 4418 高斯消元解决概率期望
题目大意: 一个人在n长的路径上走到底再往回,走i步停下来的概率为Pi , 求从起点开始到自己所希望的终点所走步数的数学期望 因为每个位置都跟后m个位置的数学期望有关 E[i] = sigma((E[ ...
- hdu 4418 高斯消元求期望
Time travel Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 2827 高斯消元
模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @A ...
- HDU-4418 Time travel 概率DP,高斯消元
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4418 题意:简单来说就是给你1个环(n - 1 , n - 2 …… 0 ,1 , 2 , 3 …… ...
- hdu 3915 高斯消元
http://acm.hdu.edu.cn/showproblem.php?pid=3915 这道题目是和博弈论挂钩的高斯消元.本题涉及的博弈是nim博弈,结论是:当先手处于奇异局势时(几堆石子数相互 ...
- HDU 3359 高斯消元模板题,
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 ...
- HDU4418 Time travel(期望dp 高斯消元)
题意 题目链接 Sol mdzz这题真的太恶心了.. 首先不难看出这就是个高斯消元解方程的板子题 \(f[x] = \sum_{i = 1}^n f[to(x + i)] * p[i] + ave\) ...
- hdu 5088 高斯消元n堆石子取k堆石子使剩余异或值为0
http://acm.hdu.edu.cn/showproblem.php?pid=5088 求能否去掉几堆石子使得nim游戏胜利 我们可以把题目转化成求n堆石子中的k堆石子数异或为0的情况数.使用x ...
- HDU 3364 高斯消元
Lanterns Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
随机推荐
- Spring Boot应用总结更新
一.SpringBoot的产生背景: SpringBoot的产生背景伴随着微服务,微服务的相关概念参考上一篇的博客,分布式架构理论: 微服务的宏观概念理解: 将一个大应用拆分成多个小应用,一个小应用是 ...
- Asp.net Core应用程序部署为服务
安装前使用dotnet命令运行下看网站能不能正常运行 1.下载nssm,下载后解压文件 下载地址:https://nssm.cc/usage 2.使用命令行工具进入到nssm的目录: 3.执行服务安装 ...
- iOS 设置View阴影
iOS 设置View投影 需要设置 颜色 阴影半径 等元素 UIView *shadowView = [[UIView alloc] init]; shadowView.frame = CGRectM ...
- 调试工具gdb
1.1 gdb符号调试器简介 gdb是一个用来调试C和C++程序的功能强大的调试器,它能在程序运行时观察程序的内部结构和内存的使用情况. gdb主要提供以下几种功能: 监视程序中变量值的变化 设置断点 ...
- CentOS 6.2 中文
在虚拟机里面安装好centos6.2之后,默认是英文! 对于命令行操作无所谓啦,但是如果想看界面,就不是很适应! 修改方法如下: 1.用root登录系统,密码为创建虚拟机时候的密码.创建虚 ...
- RESTful API规范
1. 域名 应该尽量将API部署在专用的域名下. https://api.example.com 如果确定API简单,不会有进一步的括在,可以考虑放在主域名之下. https://example.or ...
- jdk 环境变量
1. jdk安装后的目录 2.JAVA_HOME C:\Program Files\Java\jdk1.8.0_172 3.PATH %JAVA_HOME%\bin 4.CLASSPATH .;%JA ...
- 关于idea在运行web项目时部署的位置
(转) 以前一直很好奇,在idea中运行tomcat,把项目部署到其中,运行起来,然后我去tomcat目录下去看,根本找不到我部署的项目 那我的项目是咋运行的啊… - - 后来我就查啊查 ,纠结啊纠结 ...
- centos7下kubernetes(18。kubernetes-健康检查)
自愈能力是容器的重要特性.自愈的默认方式是自动重启发生故障的容器. 用户还可以通过liveness和readiness探测机制设置更精细的健康检查,进而实现: 1.零停机部署 2.避免部署无效的镜像 ...
- Linux内存管理 (25)内存sysfs节点解读
1. General 1.1 /proc/meminfo /proc/meminfo是了解Linux系统内存使用状况主要接口,也是free等命令的数据来源. 下面是cat /proc/meminfo的 ...