[物理学与PDEs]第1章第9节 Darwin 模型 9.1 拟静电模型及其修正形式
1. 拟静电模型: 当 $\cfrac{\omega}{c}\ll \cfrac{1}{c}\lra \omega\ll \cfrac{c}{l}$ 时, $$\bex \cfrac{1}{c}\cfrac{\p{\bf B}}{\p t}\sim \cfrac{\omega}{c}\ll \cfrac{1}{l}\sim \rot{\bf E} \eex$$ 知 $\cfrac{1}{c}\cfrac{\p{\bf B}}{\p t}$ 可忽略, 而 Maxwell 方程组化为似稳场方程组 $$\beex \bea \ve\cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\mu}\rot{\bf B}&=-{\bf j},\\ \rot{\bf E}&={\bf 0},\\ \Div{\bf E}&=\cfrac{\rho}{\ve},\\ \Div{\bf B}&=0. \eea \eeex$$
2. 修正
(1) 拟静电模型是略去了 ${\bf E}$ 的横场部分.
(2) 修正为 Darwin 模型.
[物理学与PDEs]第1章第9节 Darwin 模型 9.1 拟静电模型及其修正形式的更多相关文章
- [物理学与PDEs]第1章第9节 Darwin 模型 9.3 Darwin 模型
1. $\Omega$ 中 ${\bf A}={\bf A}_T+{\bf A}_L$, 其中 $\Div{\bf A}_T=0$, $\rot{\bf A}_L={\bf 0}$. 若 $$\bex ...
- [物理学与PDEs]第1章第9节 Darwin 模型 9.2 Maxwell 方程组的一个定解问题
设 $\Omega$ 为一有界区域, 外部为理想导体 $(\sigma=+\infty)$, 则 $\Omega$ 中电磁场满足 Maxwell 方程组 $$\beex \bea \ve\cfrac{ ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
随机推荐
- SAP CRM 集类型(Set Type)与产品层次(Product Hierarchy)
本文是产品与对象相关的部分SAP文档的翻译,不包含配置部分. 本文链接:https://www.cnblogs.com/hhelibeb/p/10112723.html 1,对象(Objects) 对 ...
- .net 调用java service 代理类方法
通过Svcutil.exe 工具生成代理类调用 1.找到如下地址“C:\Windows\System32\cmd.exe” 命令行工具,右键以管理员身份运行(视系统是否为win7 而定) 2 ...
- KERBEROS PROTOCOL TUTORIAL
KERBEROS PROTOCOL TUTORIAL This tutorial was written by Fulvio Ricciardi and is reprinted here wit ...
- C++ 既有约定
Pascal 拼写法: 函数名MultiplyNumbers(),每个单词的首字母都大写 驼峰拼写法: 变量名 firstNumber,第一个单词的首字母采用小写 匈牙利表示法: iFirstNumb ...
- java如何获取一个对象的大小【转】
When---什么时候需要知道对象的内存大小 在内存足够用的情况下我们是不需要考虑java中一个对象所占内存大小的.但当一个系统的内存有限,或者某块程序代码允许使用的内存大小有限制,又或者设计一个缓存 ...
- 小程序——返回上个页面触发事件(onUnload)
//页面销毁前--上传被提交的数据 onUnload:function(){ var _this=this; let updateStatus = wx.getStorageSync('UpdateS ...
- VS2010创建MVC4项目提示错误: 此模板尝试加载组件程序集 “NuGet.VisualStudio.Interop, Version=1.0.0.0, Culture=neutral,
在安装VS2010时没有安装MVC4,于是后面自己下载安装了(居然还要安装VS2010 SP1补丁包).装完后新建MVC项目时却提示: 错误: 此模板尝试加载组件程序集 “NuGet.VisualSt ...
- 控制结构(6): 最近最少使用(LRU)
// 上一篇:必经之地(using) // 下一篇:程序计数器(PC) 基于语言提供的基本控制结构,更好地组织和表达程序,需要良好的控制结构. There are only two hard thin ...
- CodeForces Round #545 Div.2
A. Sushi for Two 代码: #include <bits/stdc++.h> using namespace std; ; ; int a[maxn], vis[maxn]; ...
- c# pda
1.去除标题栏 FormBorderStyle属性设置为none 2.去除任务栏 [System.Runtime.InteropServices.DllImport("coredll.dll ...