51nod--1069 Nim 游戏(博弈论)
题目:
有N堆石子。A B两个人轮流拿,A先拿。每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N及每堆石子的数量,问最后谁能赢得比赛。
例如:3堆石子,每堆1颗。A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子。
Input
第1行:一个数N,表示有N堆石子。(1 <= N <= 1000)
第2 - N + 1行:N堆石子的数量。(1 <= A[i] <= 10^9)
Output
如果A获胜输出A,如果B获胜输出B。
Input示例
3
1
1
1
Output示例
A
分析:
又是一个经典的博弈问题, 对所有的数做 xor 运算, 结果为 0 就是 B, 否则 A;
证明: 点我萌萌哒
实现:
#include <bits/stdc++.h>
using namespace std;
int main() {
int ret , N, tmp;
while(cin >> N) {
for(int i = 1; i <= N; ++i) {
cin >> tmp;
if(i == 1) ret = tmp;
else ret = ret ^ tmp;
}
cout << (ret ? 'A' : 'B') << endl;
}
return 0;
}
51nod--1069 Nim 游戏(博弈论)的更多相关文章
- 51NOD 1069 Nim游戏
1069 Nim游戏 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出 ...
- (博弈论)51NOD 1069 Nim游戏
有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后 ...
- 51Nod 1069 Nim游戏 (位运算)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1069 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆 ...
- 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)
首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...
- 1069 Nim游戏
1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- 洛谷.2197.nim游戏(博弈论 Nim)
题目链接 后手必胜(先手必败,P-position)当且仅当n堆石子数异或和为0. 首先0一定是P-position, 假设a1^a2^a3^...^an=K 若K!=0,则一定可以找到一个ai,ai ...
- 51 Nod 1069 Nim游戏
分析: a1 xor a2 xor a3 ... xor an !=0 则为必胜态 a1 xor a2 xor a3 ... xor an ==0 则为必败态 也就是说只要计算异或值,如果非零则A赢, ...
- 51Nod 1069:Nim游戏(尼姆博弈)
1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走, ...
- 博弈论之Nim游戏
Nim游戏是组合游戏(Combinatorial Games)的一种,属于“Impartial Combinatorial Games”(以下简称ICG). 通常的Nim游戏的定义是这样的:有若干堆石 ...
随机推荐
- 有关python2与python3中关于除的不同
有关python2与python3中关于除的不同 python中2版本与3版本关于除的处理还是有一些差异的. 在python 2.7.15中除(/)是向下取整的,即去尾法. 123/10 # 结果 1 ...
- css高度自適應
高度自適應意思是高度能隨著瀏覽器的大小的變化而變化.
- Google Translation Via Python
没什么好说的,直接送包 https://github.com/mouuff/mtranslate
- Git submodule - 子模块【转】
子模块 有种情况我们经常会遇到:某个工作中的项目需要包含并使用另一个项目. 也许是第三方库,或者你独立开发的,用于多个父项目的库. 现在问题来了:你想要把它们当做两个独立的项目,同时又想在一个项目中使 ...
- di.xml
di.xml文件 该di.xml文件配置对象管理器要注入的依赖项. 领域和应用入口点 每个 模块 都可以具有全局和区域特定的di.xml文件.Magento读取di.xml系统中声明的所有配置文件,并 ...
- iView页面Modal中内嵌Tabs,重新显示Modal时默认选中Tabs的第一项
文档中说激活面板的name用value,页面第一次加载的时候可以,放在modal里就不好使了,每次打开的时候总显示上一次离开时的界面. 真正能用的是 this.$refs.tabs.activeKey ...
- Linux 配置vim编辑器
最终效果 步骤1.下载NERDTree插件安装包(vim目录插件) https://www.vim.org/scripts/script.php?script_id=1658 步骤2.在家目录创建 . ...
- Mysql相关知识点梳理(一):优化查询
EXPLAIN解析SELECT语句执行计划: EXPLAIN与DESC同义,通过它可解析MySQL如何处理SELECT,提供有关表如何联接和联接的次序,还可以知道什么时候必须为表加入索引以得到一个使用 ...
- node安装express-generator脚手架
参考网址:https://www.jianshu.com/p/b555ba6f4067 全局安装: npm install express-generator -g 创建项目pro_test expr ...
- 1.1浅谈Spring(一个叫春的框架)
如今各种Spring框架甚嚣尘上,但是终归还是属于spring的东西.所以在这里,个人谈一谈对spring的认识,笔者觉得掌握spring原理以及spring所涉及到的设计模式对我们具有极大的帮助.我 ...