【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
题面
题解
单独考虑每一个点的贡献:
因为不知道它连了几条边,所以枚举一下
\]
因为有\(n\)个点,所以还要乘以一个\(n\)
所以,我们真正要求的就是:
\]
怎么做?
看到了\(i^k\)想到了第二类斯特林数
\]
所以把这个东西带回去
\]
\]
如果\(n\)在前面是没法算的,即使\(O(N)\)也是不行的
所以把后面的\(j\)丢到前面去
\]
后面那个是啥呢?
我们来考虑一下组合意义
有\(n-1\)个球从中选出\(i\)个染成黑色
再从\(i\)个黑球中选出\(j\)个染成白色
既然染成白色的球固定是\(j\)个
那么,我可以想先从\(n-1\)个球中选出\(j\)个直接染成白色
因为\(i\)个枚举的,相当于我可以取出任意个数染成黑色
既然有\(j\)个白球了,剩下\(n-1-j\)个球,染色或者不染色都是可以的
所以就再乘上\(2^{n-1-j}\)
\]
\]
\]
\]
\]
至于\(S(k,j)\)怎么算?
不要忘记第二类斯特林数也是一个卷积的形式
戳这里去看看
那么,先算出第二类斯特林数,直接算就好啦
当然啦,对于\(j>k\),\(S(k,j)=0\)就不用枚举了
所以最多枚举到\(k\)
复杂度\(O(klogk)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 998244353
#define MAX 1000000
const int pr=3;
const int phi=MOD-1;
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int N,M,l,a[MAX],b[MAX],S[MAX],r[MAX];
void NTT(int *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int W=fpow(pr,phi/(i<<1));
for(int p=i<<1,j=0;j<N;j+=p)
{
int w=1;
for(int k=0;k<i;++k,w=1ll*w*W%MOD)
{
int X=P[j+k],Y=1ll*w*P[i+j+k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=((X-Y)%MOD+MOD)%MOD;
}
}
}
if(opt==-1)reverse(&P[1],&P[N]);
}
void Work()
{
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
NTT(a,1);NTT(b,1);
for(int i=0;i<N;++i)a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,-1);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)a[i]=1ll*a[i]*inv%MOD;
}
int n,K,jc[MAX],inv[MAX],ans;
int main()
{
scanf("%d%d",&n,&K);
jc[0]=inv[0]=1;
for(int i=1;i<=K;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=K;++i)inv[i]=fpow(jc[i],MOD-2);
N=M=K;
for(int i=0;i<=K;++i)a[i]=(i&1)?MOD-inv[i]:inv[i];
for(int i=0;i<=K;++i)b[i]=1ll*fpow(i,K)*inv[i]%MOD;
Work();
for(int i=0;i<=K;++i)S[i]=a[i];
int inv2=fpow(2,MOD-2);
for(int i=0,p=fpow(2,n-1),pp=1;i<=min(n-1,K);++i)
{
int t=1ll*S[i]*pp%MOD*p%MOD;
p=1ll*p*inv2%MOD;
pp=1ll*pp*(n-1-i)%MOD;
ans=(ans+t)%MOD;
}
ans=1ll*ans*n%MOD;
ans=1ll*ans*fpow(2,1ll*(n-1)*(n-2)/2%phi)%MOD;
printf("%d\n",ans);
return 0;
}
【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)的更多相关文章
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
- bzoj 5093 图的价值 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...
- bzoj 5093 [Lydsy1711月赛]图的价值——第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 不要见到组合数就拆! 枚举每个点的度数,则答案为 \( n*\sum\limits_{ ...
- 【洛谷2791】幼儿园篮球题(第二类斯特林数,NTT)
[洛谷2791]幼儿园篮球题(第二类斯特林数,NTT) 题面 洛谷 题解 对于每一组询问,要求的东西本质上就是: \[\sum_{i=0}^{k}{m\choose i}{n-m\choose k-i ...
- 【XSY1301】原题的价值 第二类斯特林数 NTT
题目描述 给你\(n,m\),求所有\(n\)个点的简单无向图中每个点度数的\(m\)次方的和. \(n\leq {10}^9,m\leq {10}^5\) 题解 \(g_n\)为\(n\)个点的无向 ...
- 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- bzoj5093:图的价值(第二类斯特林数+NTT)
传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...
- BZOJ5093 图的价值——推式子+第二类斯特林数
原题链接 题解 题目等价于求这个式子 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}{i}i^k\] 有这么一个式子 ...
随机推荐
- 基于Java的WebSocket推送
WebSocket的主动推送 关于消息推送,现在的解决方案如轮询.长连接或者短连接,当然还有其他的一些技术框架,有的是客户端直接去服务端拿数据. 其实推送推送主要讲的是一个推的概念,WebSocket ...
- Websocket原理及使用场景[转载]
WebSocket的使用场景 社交聊天.弹幕.多玩家游戏.协同编辑.股票基金实时报价.体育实况更新.视频会议/聊天.基于位置的应用.在线教育.智能家居等需要高实时的场景 由轮询到WebSocket 1 ...
- is there any way to stop auto block
shadowsocks出现错误日志 tail /var/log/ssserver.log 2017-07-02 12:36:31 ERROR: block all requests from 10.4 ...
- 使用JS代码实现点击按钮下载文件
有时候我们在网页上需要增加一个下载按钮,让用户能够点击后下载页面上的资料,那么怎样才能实现功能呢?这里有两种方法: 现在需要在页面上添加一个下载按钮,点击按钮下载文件. 题外话,这个下载图标是引用的 ...
- vim+makefile入门编辑,编译,差错实例
vim+makefile入门编辑,编译,差错实例 vim makefile 编译 编写代码,一般在vim中编辑完后,输入:wq,在命令行下输入g++ hello.cc -o hello ,出现问题,打 ...
- 利用fiddler和mock调试本地微信网页
利用fiddler和mock调试本地微信网页 微信公众号网页是比较特殊的页面,普通页面直接打开即可访问,但对于需要请求微信相关接口的部分需要安全域名认证.这导致了使用mock数据进行开发的页面没办法走 ...
- toString 方法在数组中的使用
对于一个一维数组,他在转换成字符串的时候应该调用Arrays.toString(); 对于一个多维数组,他在转换成字符串的时候应该调用Arrays.deepToString(); 实例: packag ...
- C# winform中Show()和ShowDialog()的区别
项目实际开发中需要根据不同的应用场景利用Show和ShowDialog,尤其是三级弹窗,慎用ShowDialog,否则会导致关闭第三级窗体时,自动关闭第二级,解决方案就是在第一级窗体弹出时采用Show ...
- MySQL的常见存储引擎介绍与参数设置调优
MySQL常用存储引擎之MyISAM 特性: 1.并发性与锁级别 2.表损坏修复 check table tablename repair table tablename 3.MyISAM表支持的索引 ...
- 字典树trie
字典树经常用于单词搜索,现在网络引擎中也应用了trie树: public class Trie{ private int SIZE = 26; private TrieNode root; Trie( ...