题目链接:

https://codeforces.com/contest/1152/problem/D

题意:

给出一个$n$,然后在匹配树上染色边,每个结点的所有相邻边只能被染色一次。

问,这颗树上最多染色多少边。

匹配树,就是深度为$2n$的树,每个节点都是一个字符串,只包含$(,)$,以长度为$2n$的合法匹配字符串作为叶子。每个节点的父亲是比自身长度小一的节点。

数据范围:

$1 \le n \le 1000$

分析:

在百度找了很久都没找到满意的题解,于是看了cf给的官方题解。虽然是全英文,但我居然看明白了!

实现起来不同,但是思路是一样的。

贪心的方法是,先染色叶子和叶子节点的父亲,并且去除它们,再染色叶子和叶子节点的父亲。

定义不平衡度,$($的数量减$)$的数量。

长度为x,不平衡度为y的子树染色方案数相同

例如这些节点$((()),()()(,(())($的子树,染色方案数相同

选择定义$dp[x][y]$,根节点长度为$x$,不平衡度为$y$,的子树的染色方案数

转移方程为

$ans=dp[0][0]$

ac代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e3+10;
const int maxm=1e7+10;
const int mod=1e9+7;
ll dp[2*maxn][2*maxn];
bool color[2*maxn][2*maxn];
int main()
{
int n;
scanf("%d",&n);
for(int i=2*n-1;i>=0;i--)
{
for(int j=0;j<=2*n-i;j++)
{
int flag=0;
if(j-1>=0)
{
dp[i][j]=(dp[i][j]+dp[i+1][j-1])%mod;
if(color[i+1][j-1]==0)flag=1;
}
if(j+1<=2*n-i-1)
{
dp[i][j]=(dp[i][j]+dp[i+1][j+1])%mod;
if(color[i+1][j+1]==0)flag=1;
}
if(flag)color[i][j]=1,dp[i][j]=(dp[i][j]+1)%mod;
}
}
printf("%d\n",dp[0][0]);
return 0;
}

  

codeforces#1152D. Neko and Aki's Prank(dp)的更多相关文章

  1. CodeForces 1152D Neko and Aki's Prank

    说明 Catalan(i) 表示卡特兰数的第 i 项. 题目链接:http://codeforces.com/problemset/problem/1152/C 题目大意 有 n 个左括号和 n 个右 ...

  2. Codeforces Round #260 (Div. 2)C. Boredom(dp)

    C. Boredom time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  3. Codeforces Round #658 (Div. 2) D. Unmerge(dp)

    题目链接:https://codeforces.com/contest/1382/problem/D 题意 给出一个大小为 $2n$ 的排列,判断能否找到两个长为 $n$ 的子序列,使得二者归并排序后 ...

  4. codeforces #260 DIV 2 C题Boredom(DP)

    题目地址:http://codeforces.com/contest/456/problem/C 脑残了. .DP仅仅DP到了n. . 应该DP到10w+的. . 代码例如以下: #include & ...

  5. codeforces#FF DIV2C题DZY Loves Sequences(DP)

    题目地址:http://codeforces.com/contest/447/problem/C C. DZY Loves Sequences time limit per test 1 second ...

  6. Codeforces Round #471 (Div. 2) F. Heaps(dp)

    题意 给定一棵以 \(1\) 号点为根的树.若满足以下条件,则认为节点 \(p\) 处有一个 \(k\) 叉高度为 \(m\) 的堆: 若 \(m = 1\) ,则 \(p\) 本身就是一个 \(k\ ...

  7. Codeforces 766C:Mahmoud and a Message(DP)

    题目链接:http://codeforces.com/problemset/problem/766/C 题意 有一个长度为n的字符串,第二行有26个数字,位置1~26对应为a~z的字母,数值表示该字母 ...

  8. Codeforces Problem - 38E - Let's Go Rolling!(DP)

    E. Let's Go Rolling! time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. Educational Codeforces Round 20 E - Roma and Poker(dp)

    传送门 题意 Roma在玩一个游戏,一共玩了n局,赢则bourle+1,输则bourle-1,Roma将会在以下情况中退出 1.他赢了k个bourle 2.他输了k个bourle 现在给出一个字符串 ...

随机推荐

  1. 模式识别笔记4-集成学习之AdaBoost

    目前集成学习(Ensemble Learning) 分为两类: 个体学习器间存在强依赖关系.必须串行化生成的序列化方法:Boosting 个体学习器间不存在强依赖关系,可同时生成的并行化方法:Bagg ...

  2. python --- 插入排序算法

    先上一张图,看看能不能从里面悟出些什么: 问题的解决思路: 就是当插入第i个的时候,前面的[i- 1]个已经排好了,这时候lst[i]就倒过来逐个和前面的关键字顺序进行比较,找到插入位置即将lst[i ...

  3. Nodejs+Express 搭建 web应用

    简单的记录下关于如何使用nodejs+Express 极速搭建一个web应用. 项目所需,要用到nodejs,那就去学咯.简单的看了下 七天学会NodeJS,Node.js 教程.发现其实好简单的,分 ...

  4. GC参考手册 —— GC 调优(工具篇)

    JVM 在程序执行的过程中, 提供了GC行为的原生数据.那么, 我们就可以利用这些原生数据来生成各种报告.原生数据(raw data) 包括: 各个内存池的当前使用情况, 各个内存池的总容量, 每次G ...

  5. 『集群』005 Slithice 基于 集群 的 自动容错

    Slithice 基于 集群 的 自动容错 Slithice容错概述: Slithice 支持 非集群 的 独立服务端: 支持 基于 中央服务器 的 集群服务端: 支持 基于 自定义配置 的 集群服务 ...

  6. 我的那些年(9)~我来团队了,Mvc兴起了

    回到目录 我的那些年(9)~我来团队了,Mvc兴起了 在一次后出办事后直接去面试了 面试就是答卷子 六里桥一个好地址 搬回老家了 在老婆的建议下学驾照了 拿到大专毕业证了 买车了 愉一切可以愉的时间学 ...

  7. Java 集合详解

    一.集合的由来 通常,我们的程序需要根据程序运行时才知道创建多少个对象.但若非程序运行,程序开发阶段,我们根本不知道到底需要多少个数量的对象,甚至不知道它的准确类型.为了满足这些常规的编程需要,我们要 ...

  8. 从QA到工程能效团队

    Engineering Productivity Productivity is our job; testing and quality are the job of everyone involv ...

  9. SpringCloud Alibaba-nacos注册中心

    什么是 Nacos?(https://nacos.io) Nacos 致力于帮助您发现.配置和管理微服务.Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现.服务配置.服务元数据及流量 ...

  10. 在 Angular 8 中,我们可以期待些什么

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 本文由葡萄城翻译并发布 --- Angular 作为一款优秀的前端框架,自诞生之日起,就致力于面向前端开发者 ...