bzoj4785:[ZJOI2017]树状数组:二维线段树
分析:
“如果你对树状数组比较熟悉,不难发现可怜求的是后缀和”
设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\(r\)的后缀,\(\sum_{i=l-1}^{r-1}A_i\)),而答案为\(A_l\)到\(A_r\)的和(即\(\sum_{i=l}^{r}A_i\))这两种答案都包含\(A_l\)到\(A_{r-1}\)的和,因此只需判断\(A_{l-1}\)与\(A_r\)相等的概率就行了
那么怎么算?
考虑记下每次修改的影响,假设已知左端点\(a\)和右端点\(b\),那么对于某一次修改区间\(l\)~\(r\),则只有当\(a\in[l,r]\)或\(b\in[l,r]\)时才有影响,设\(p\)为任选区间内一个数的概率,这里分三种情况讨论:
- \(a\in[1,l-1]\),\(b\in[l,r]\)时,有\(1-p\)的概率不影响
- \(a\in[l,r]\),\(b\in[l,r]\)时,有\(1-2*p\)的概率不影响
- \(a\in[l,r]\),\(b\in[r+1,n]\)时,有\(1-p\)的概率不影响
那么只要把所有的影响都合并起来就行了,设当前相同概率为\(p\),当前修改不影响的概率\(q\),则相同概率更新为\(p*q+(1-p)*(1-q)\)
但是直接朴素必然TLE,因此我们要寻找更高效的算法
考虑二维线段树,设点\((x,y)\)表示\(A_x\)与\(A_y\)相等的概率,那么我们会惊奇的发现:
这不就是区间修改单点查询吗!
每读入一个修改,就用上面所说的影响更新区间,即\([1,l-1,l,r],[l,r,l,r],[l,r,r+1,n]\)三个区间,用上述式子合并区间
询问即查询点\((l-1,r)\)的值
还有一个坑点!!\(l\)可能为\(1\)!!
\(l=1\)时,可怜求的是\(r\)的后缀和,因此我们需要求\(r\)的后缀和与前缀和相等的概率
这也可以用类似方法,第一维我们新增一个元素\(0\),用\([0,x]\)表示\(x\)的后缀和与前缀和相等的概率,那么当修改区间\([l,r]\)时,区间\([1,l-1]\),\([r+1,n]\)中元素的后缀和与前缀和一定会被影响,即不被影响概率为\(0\);而区间\([l,r]\)中元素有\(p\)的概率不被影响(即正好选到它,\(p\)的意义即为上述),这时我们也要更新。这样当\(l=1\)时,直接查询点\((l-1,r)\)的值即可
还有就是卡卡常数,卡卡空间
以及线段树要动态开点
Code:
(代码丑不要怪我)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<string>
#include<iostream>
#include<queue>
#include<iomanip>
#include<algorithm>
using namespace std;
const int N=100010;
const int MOD=998244353;
int rt[N*21],n,cnt;
struct tree
{
int l,r;
int v;//卡空间,开int
}tr[N*402];
inline long long mul(long long p,long long q)//p*q+(1-p)*(1-q)
{
long long res=p*q%MOD;
res=(res+(1-p+MOD)*(1-q+MOD)%MOD)%MOD;
return res;
}
inline long long power(long long x,long long y)//快速幂
{
long long ans=1;
while(y)
{
if(y&1) ans=ans*x%MOD;
x=x*x%MOD,y>>=1;
}
return ans;
}
inline void updatay(int l,int r,int &id,int ly,int ry,long long p)//修改区间二维
{
if(id==0)
{
cnt++;
id=cnt;
tr[id].v=1;//初始时都是0,因此相等概率为1
}
if(l>=ly&&r<=ry)
{
tr[id].v=mul(p,tr[id].v);
return;
}
int mid=l+r>>1;
if(ly<=mid) updatay(l,mid,tr[id].l,ly,ry,p);
if(ry>mid) updatay(mid+1,r,tr[id].r,ly,ry,p);
}
inline void updatax(int l,int r,int id,int lx,int rx,int ly,int ry,long long p)//修改区间一维
{
if(l>=lx&&r<=rx)
{
updatay(1,n,rt[id],ly,ry,p);
return;
}
int mid=l+r>>1;
if(lx<=mid) updatax(l,mid,id<<1,lx,rx,ly,ry,p);
if(rx>mid) updatax(mid+1,r,id<<1|1,lx,rx,ly,ry,p);
}
long long quey(int l,int r,int id,int y)//查询二维
{
if(id==0) return 1;//初始时都是0,因此相等概率为1
if(l==r) return tr[id].v;
int mid=l+r>>1;
long long res;
if(y<=mid) res=mul(tr[id].v,quey(l,mid,tr[id].l,y));
else res=mul(tr[id].v,quey(mid+1,r,tr[id].r,y));
//合并沿途所有区间影响值
return res;
}
long long quex(int l,int r,int id,int x,int y)//查询一维
{
if(l==r) return quey(1,n,rt[id],y);
int mid=l+r>>1;
if(x<=mid) return mul(quey(1,n,rt[id],y),quex(l,mid,id<<1,x,y));
else return mul(quey(1,n,rt[id],y),quex(mid+1,r,id<<1|1,x,y));
//合并沿途所有区间影响值
}
int main()
{
int i,j,k,q,op,l,r;
long long p;
scanf("%d%d",&n,&q);
cnt=0;
while(q--)
{
scanf("%d%d%d",&op,&l,&r);
if(op==1)
{
p=power(r-l+1,MOD-2);//求逆元,即选某一个元素的概率
if(l>1) updatax(0,n,1,1,l-1,l,r,(1-p+MOD)%MOD),updatax(0,n,1,0,0,1,l-1,0);
if(r<n) updatax(0,n,1,l,r,r+1,n,(1-p+MOD)%MOD),updatax(0,n,1,0,0,r+1,n,0);
updatax(0,n,1,l,r,l,r,(1-p*2%MOD+MOD)%MOD),updatax(0,n,1,0,0,l,r,p);
}
else printf("%lld\n",quex(0,n,1,l-1,r));
}
return 0;
}
bzoj4785:[ZJOI2017]树状数组:二维线段树的更多相关文章
- BZOJ 4785 [Zjoi2017]树状数组 | 二维线段树
题目链接 BZOJ 4785 题解 这道题真是令人头秃 = = 可以看出题面中的九条可怜把求前缀和写成了求后缀和,然后他求的区间和却仍然是sum[r] ^ sum[l - 1],实际上求的是闭区间[l ...
- BZOJ4822[Cqoi2017]老C的任务——树状数组(二维数点)
题目描述 老 C 是个程序员. 最近老 C 从老板那里接到了一个任务——给城市中的手机基站写个管理系统.作为经验丰富的程序员,老 C 轻松 地完成了系统的大部分功能,并把其中一个功能交给你来实 ...
- BZOJ1935: [Shoi2007]Tree 园丁的烦恼(树状数组 二维数点)
题意 题目链接 Sol 二维数点板子题 首先把询问拆成四个矩形 然后离散化+树状数组统计就可以了 // luogu-judger-enable-o2 #include<bits/stdc++.h ...
- 树状数组 二维偏序【洛谷P3431】 [POI2005]AUT-The Bus
P3431 [POI2005]AUT-The Bus Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 ...
- 树状数组+二维前缀和(A.The beautiful values of the palace)--The Preliminary Contest for ICPC Asia Nanjing 2019
题意: 给你螺旋型的矩阵,告诉你那几个点有值,问你某一个矩阵区间的和是多少. 思路: 以后记住:二维前缀和sort+树状数组就行了!!!. #define IOS ios_base::sync_wit ...
- bzoj 4822: [Cqoi2017]老C的任务【扫描线+树状数组+二维差分】
一个树状数组能解决的问题分要用树套树--还写错了我别是个傻子吧? 这种题还是挺多的,大概就是把每个矩形询问差分拆成四个点前缀和相加的形式(x1-1,y1-1,1)(x2.y2,1)(x1-1,y2,- ...
- 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- [Usaco2014 Open Gold ]Cow Optics (树状数组+扫描线/函数式线段树)
这道题一上手就知道怎么做了= = 直接求出原光路和从目标点出发的光路,求这些光路的交点就行了 然后用树状数组+扫描线或函数式线段树就能过了= = 大量的离散+模拟+二分什么的特别恶心,考试的时候是想到 ...
- HDU - 1166 树状数组模板(线段树也写了一遍)
题意: 汉语题就不说题意了,用到单点修改和区间查询(树状数组和线段树都可以) 思路: 树状数组的单点查询,单点修改和区间查询. 树状数组是巧妙运用二进制的规律建树,建树就相当于单点修改.这里面用到一个 ...
随机推荐
- AR增强现实开发介绍(续)
AR增强现实开发介绍(续) ---开发基础篇 开发增强现实技术,无论是商业级应用,还是面向幼儿教育的游戏产品,都需要从了解.获取.下载增强现实插件开始.目前全世界使用量最大公认最好的增强现实插件是高通 ...
- 深度学习之卷积神经网络(CNN)详解与代码实现(二)
用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...
- .Net Core 根据配置文件动态发布至服务器
前言 一个软件的开发周期需要经历开发.测试.上线三个基本的阶段,同理我们在开发过程中会需要经常切换不同的运行环境..NetCore可以通过配置文件以及写入系统环境变量来自动识别站点的运行环境,保证了数 ...
- golang实现aes-cbc-256加密解密过程记录
我为什么吃撑了要实现go的aes-cbc-256加密解密功能? 之前的项目是用php实现的,现在准备用go重构,需要用到这个功能,这么常用的功能上网一搜一大把现成例子,于是基于go现有api分分钟实现 ...
- POJ1006: 中国剩余定理的完美演绎
POJ1006: 中国剩余定理的完美演绎 问题描述 人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最 ...
- mysql入门知识
数据库 什么是数据库就是存储数据的仓库(容器) 存储数据的方式1.变量 无法永久存储2.文件处理 ,可以永久存储 文件处理存在的弊端: 1.文件处理速度慢 2.文件只能在自己的计算机上读写 无法被共享 ...
- Spring boot项目maven的profile多环境配置不自动替换变量的问题解决
Spring boot项目maven的profile多环境配置不自动替换变量的问题解决 在网上找了好久,配置都很简单,可是我的程序就是不能自动替换变量,最终单独测试,发现原来是引用spring b ...
- Salesforce 简介
Salesforce是什么 Salesforce是一个功能全面的云平台.它是践行Saas(软件及服务)概念的先驱之一. Salesforce的核心功能是CRM(客户关系管理系统).系统默认提供大多数C ...
- 轻松学习UML之用例图,时序图
本文主要讲解UML图中的用例图(Use Case Diagram)和时序图(Sequence Diagram)相关内容,如有不足之处,还请指正. 概述 统一建模语言(UML,UnifiedModeli ...
- 关于C#中的++运算符的一些拓展思考
在刷LeetCode题库的时候,看到一个大神写的for循环是这样的 ;i<length;++i) { //dosomething } 其实最终的效果和 ;i<l;i++){} 是一样的. ...