原题链接 https://www.luogu.org/problemnew/show/P1536

昨天刚学的并查集,今天正好练习一下,于是就找到了这个题

看起来好像很简单,尤其是你明白了思路之后,完全就和板子题没啥区别嘛

话是这么说,但是思路我一开始也没想到,只知道要用并查集和生成树的知识,知道看到了题解里的思路才恍然大悟,果然很简单(逃

说下我一开始的思路:

单纯又天真的认为把这几个点弄成连通图所用的最小边数再减去题目中输入的m就好啦,又想到最小边数是n-1,难道这个题的答案是n-1-m(如果是负数就为0)???

试了一下样例,完全正确!!!~~~看一下难度:普及/提高-  又一水题?

又陷入了沉思~~~题目中所给出的联通情况有可能是重复联通,或构成环!!!

例如:n=3,m=2

理想情况:1--2  1--3    这样答案就是上面的公式:0

实际情况:1--2   2--1   这不是吃撑了没事干嘛???  对于这种情况,上面的公式就不行了!!!因为正确答案是1

所以刚刚总结的公式是要保证题目给出的联通情况不重复联通才行,或者不构成环

对于不构成环这个限制条件,可能有一些小盆友同学不理解,下面再给出一个例子:

例如: n=4,m=3

理想情况:1--2  2--3  3--4  这样答案就是上面的公式:0

实际情况:1--2  2--3  1--3  这时候1.2.3构成了一个环(可以理解成多做了一步无用功,因为利用传递1和3已经联通了,它再连一次没卵用),不符合上面的公式了,正确答案为1

那么我们有了下面的正确思路

利用并查集,根据题目中给出的m种联通关系,把m组点联通起来,怎么连的应该不用说吧...并把每组点合并,注意要直接指向祖宗结点,也就是优化后的那种

这样联通起来的点都有一个共同的祖先,最后我们再来一重for循环判断:

        for(int i=;i<=n;i++)
{if(f[i]==i) ans++;} //如果有一个结点的父结点仍为自己,说明它没有与其他结点联通,计算上
cout<<ans-<<endl; //我们统计的ans是未被联通的结点的个数,那么联通它们所用的最少边就是ans-1

再注意一个小细节,判0作为结束符号!!!一开始没看到结果10个点全TLE

下面上代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,x,y,f[],ans=;
int getf(int x) //找父结点甚至根结点
{
if(f[x]!=x) f[x]=getf(f[x]); //利用递归直接找到根结点
return f[x]; //返回
}
void father(int x,int y) //把两个结点弄成同一父结点
{
int fx=getf(x);
int fy=getf(y);
if(fx!=fy) f[fx]=fy; //注意中括号里是x的根结点fx,这样从任何fx的子结点开始往上找都会找到y的根结点
} //如果中括号里是x,那么只能从x的子结点往上找才能找到y的根结点,若从fx到x的结点中往上找只会找到fx
int main()
{
while(scanf("%d",&n))
{
if(n==) break; //判0
scanf("%d",&m);
memset(f,,sizeof(f)); //清不清空好像无所谓
for(int i=;i<=n;i++)
f[i]=i; //定义初始状态
ans=;
if(m!=)
{
for(int i=;i<=m;i++)
{
cin>>x>>y;
father(x,y); //弄成同一父结点
}
}
for(int i=;i<=n;i++)
{if(f[i]==i) ans++;} //如果有一个结点的父结点仍为自己,说明它没有与其他结点联通,计算上
cout<<ans-<<endl; //因为会有一个结点已被联通但还是会被算上(它就是众结点的祖宗),所以要减去这一个
}
return ;
}

P1536 村村通的更多相关文章

  1. 洛谷—— P1536 村村通

    P1536 村村通 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府“村村通工程”的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连, ...

  2. 洛谷 P1536 村村通

    目录 题目 思路 \(Code\) 题目 P1536 村村通 思路 并查集,一开始连通快的数量为\(n\),输入\(m\)条边时如果该边起点和终点不在同一联通块内就合并并让联通块数量减一,最后输出联通 ...

  3. 【洛谷】【最小生成树】P1536 村村通

    [题目描述:] 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府"村村通工程"的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路 ...

  4. [LUOGU] P1536 村村通

    题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府"村村通工程"的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连, ...

  5. P1536 村村通 洛谷

    https://www.luogu.org/problem/show?pid=1536 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府“村村通工程”的 ...

  6. P1536 村村通(洛谷)并查集

    隔壁的dgdger带我看了看老师的LCA教程,我因为学习数学太累了(就是懒),去水了一下,感觉很简单的样子,于是我也来写(水)个博客吧. 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列 ...

  7. 【luogu P1536 村村通】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1536 并查集的运用,可以用生成树的思想,就是n个点生成一棵树需要n-1条边.这样我们先把已有的路连接到一个并 ...

  8. 洛谷 P1536 村村通(并查集)

    嗯... 题目链接:https://www.luogu.org/problemnew/show/P1536 思路: 这道题可以看出是并查集的思想,然后用一个while嵌套一下,输入一条路的两个端点,就 ...

  9. [洛谷P1536]村村通

    题意:多组数据,当n为0时结束,每组数据表示有n个村子,m条路,求还需要建多少条路,使得所有的村子联通题解:用并查集求出有多少个联通块,然后求解 C++ Code: #include<cstdi ...

随机推荐

  1. 使用 FFT 分析周期性数据

    可以使用傅里叶变换来分析数据中的变化,例如一个时间段内的自然事件. 天文学家使用苏黎世太阳黑子相对数将几乎 300 年的太阳黑子的数量和大小制成表格.对大约 1700 至 2000 年间的苏黎世数绘图 ...

  2. 使用IO流写文件的一些骚操作

    序言 当需要对文件进行操作时,使用IO流是不能避免的操作:比如业务中需要存储一些请求的响应结果中的一些内容.当所需处理的文件过大时,如果频繁的关闭文件流,会造成很大的开销,何时关闭?往往会造成比较大的 ...

  3. python基础之逻辑运算符

    python逻辑运算符: ①and ‘与’ 总结: 如果and左边为False,则直接返回左边的结果(False) 如果and左边为True,则返回的结果取决于右边的数值 ②or ‘或’ 总结: 如果 ...

  4. [笔记]记录原开发工作在base命名空间下扩展的属性与方法

    前言 该笔记只是为了记录以前开发使用的方式. 处理命名空间namespace /** * 处理命名空间 * @param {string} 空间名称,可多个 * @return {object} 对象 ...

  5. .net开源工作流ccflow从表数据数据源导入设置

    第1节. 关键字 驰骋工作流引擎 流程快速开发平台 workflow ccflow jflow  .net开源工作流 第2节. 从表数据导入设置 1.1.1: 概要说明 在从表的使用中我一般都会用到从 ...

  6. Android ListView的基本应用

    ListView可以说是Android原生开发最基本.最重要的控件之一,良好的使用ListView可以让自己的项目得到提高,下面是ListView最简单的应用方式 定义ListViewlist_vie ...

  7. 荣耀5.0以上手机(亲测有效)激活xposed框架的经验

    对于喜欢搞机的朋友而言,大多时候会使用到xposed框架及其种类繁多功能强悍的模块,对于5.0以下的系统版本,只要手机能获得Root权限,安装和激活xposed框架是非常简便的,但随着系统版本的不断迭 ...

  8. PM领导能力成熟度2级

    人生如戏,大幕拉开,他走上舞台,饰演PM一角. 从技术岗位迈向管理岗位的第一步,对大多数像他一样的新晋PM来说,并不轻松.技术知识与经验是他曾经的主要才能与成功基础,而从成熟度一级开始,身为管理者的他 ...

  9. 从PM到非洲酋长,得人心者得天下

    说正事之前,先唠10块钱儿的…… 偶然看到房一波的故事,这个PM了不得了! 房兄是山东电建三公司,派驻到尼日利亚建设燃机电站的PM.本来在非洲,这种“万丈高楼平地起”的项目是很好干的,可是房兄却遭遇了 ...

  10. objective-c高级编程 笔记

    引用计数:通过给对象计数标志,来判断是否释放对象 注:只能释放自己持有的对象 id obj = [NSMutableArray array] 如obj这个对象,并不是你所持有的对象,所以你无法进行释放 ...