利用LinkedHashMap实现简单的缓存
update1:第二个实现,读操作不必要采用独占锁,缓存显然是读多于写,读的时候一开始用独占锁是考虑到要递增计数和更新时间戳要加锁,不过这两个变量都是采用原子变量,因此也不必采用独占锁,修改为读写锁。
update2:一个错误,老是写错关键字啊,LRUCache的maxCapacity应该声明为volatile,而不是transient。
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示:
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map;
/**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxCapacity;
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
private final Lock lock = new ReentrantLock();
public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
}
@Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
}
@Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
}
@Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
}
public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
}
public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
}
public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}
如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
LRU算法还可以通过计数来实现,缓存存储的位置附带一个计数器,当命中时将计数器加1,替换时就查找计数最小的位置并替换,结合访问时间戳来实现。这种算法比较适合缓存数据量较小的场景,显然,遍历查找计数最小位置的时间复杂度为O(n)。我实现了一个,结合了访问时间戳,当最小计数大于MINI_ACESS时(这个参数的调整对命中率有较大影响),就移除最久没有被访问的项:
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
*
* @author dennis 类说明:当缓存数目不多时,才用缓存计数的传统LRU算法
* @param <K>
* @param <V>
*/
public class LRUCache<K, V> implements Serializable {
private static final int DEFAULT_CAPACITY = 100;
protected Map<K, ValueEntry> map;
private final ReadWriteLock lock = new ReentrantReadWriteLock();
private final Lock readLock = lock.readLock();
private final Lock writeLock = lock.writeLock();
private final volatile int maxCapacity; //保持可见性
public static int MINI_ACCESS = 5;
public LRUCache() {
this(DEFAULT_CAPACITY);
}
public LRUCache(int capacity) {
if (capacity <= 0)
throw new RuntimeException("缓存容量不得小于0");
this.maxCapacity = capacity;
this.map = new HashMap<K, ValueEntry>(maxCapacity);
}
public boolean ContainsKey(K key) {
try {
readLock.lock();
return this.map.containsKey(key);
} finally {
readLock.unlock();
}
}
public V put(K key, V value) {
try {
writeLock.lock();
if ((map.size() > maxCapacity - 1) && !map.containsKey(key)) {
// System.out.println("开始");
Set<Map.Entry<K, ValueEntry>> entries = this.map.entrySet();
removeRencentlyLeastAccess(entries);
}
ValueEntry new_value = new ValueEntry(value);
ValueEntry old_value = map.put(key, new_value);
if (old_value != null) {
new_value.count = old_value.count;
return old_value.value;
} else
return null;
} finally {
writeLock.unlock();
}
}
/**
* 移除最近最少访问
*/
protected void removeRencentlyLeastAccess(
Set<Map.Entry<K, ValueEntry>> entries) {
// 最小使用次数
long least = 0;
// 访问时间最早
long earliest = 0;
K toBeRemovedByCount = null;
K toBeRemovedByTime = null;
Iterator<Map.Entry<K, ValueEntry>> it = entries.iterator();
if (it.hasNext()) {
Map.Entry<K, ValueEntry> valueEntry = it.next();
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
earliest = valueEntry.getValue().lastAccess.get();
toBeRemovedByTime = valueEntry.getKey();
}
while (it.hasNext()) {
Map.Entry<K, ValueEntry> valueEntry = it.next();
if (valueEntry.getValue().count.get() < least) {
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
}
if (valueEntry.getValue().lastAccess.get() < earliest) {
earliest = valueEntry.getValue().count.get();
toBeRemovedByTime = valueEntry.getKey();
}
}
// System.out.println("remove:" + toBeRemoved);
// 如果最少使用次数大于MINI_ACCESS,那么移除访问时间最早的项(也就是最久没有被访问的项)
if (least > MINI_ACCESS) {
map.remove(toBeRemovedByTime);
} else {
map.remove(toBeRemovedByCount);
}
}
public V get(K key) {
try {
readLock.lock();
V value = null;
ValueEntry valueEntry = map.get(key);
if (valueEntry != null) {
// 更新访问时间戳
valueEntry.updateLastAccess();
// 更新访问次数
valueEntry.count.incrementAndGet();
value = valueEntry.value;
}
return value;
} finally {
readLock.unlock();
}
}
public void clear() {
try {
writeLock.lock();
map.clear();
} finally {
writeLock.unlock();
}
}
public int size() {
try {
readLock.lock();
return map.size();
} finally {
readLock.unlock();
}
}
public long getCount(K key) {
try {
readLock.lock();
ValueEntry valueEntry = map.get(key);
if (valueEntry != null) {
return valueEntry.count.get();
}
return 0;
} finally {
readLock.unlock();
}
}
public Collection<Map.Entry<K, V>> getAll() {
try {
readLock.lock();
Set<K> keys = map.keySet();
Map<K, V> tmp = new HashMap<K, V>();
for (K key : keys) {
tmp.put(key, map.get(key).value);
}
return new ArrayList<Map.Entry<K, V>>(tmp.entrySet());
} finally {
readLock.unlock();
}
}
class ValueEntry implements Serializable {
private V value;
private AtomicLong count;
private AtomicLong lastAccess;
public ValueEntry(V value) {
this.value = value;
this.count = new AtomicLong(0);
lastAccess = new AtomicLong(System.nanoTime());
}
public void updateLastAccess() {
this.lastAccess.set(System.nanoTime());
}
}
}
利用LinkedHashMap实现简单的缓存的更多相关文章
- 哪种缓存效果高?开源一个简单的缓存组件j2cache
背景 现在的web系统已经越来越多的应用缓存技术,而且缓存技术确实是能实足的增强系统性能的.我在项目中也开始接触一些缓存的需求. 开始简单的就用jvm(java托管内存)来做缓存,这样对于单个应用服务 ...
- 学习笔记:利用GDI+生成简单的验证码图片
学习笔记:利用GDI+生成简单的验证码图片 /// <summary> /// 单击图片时切换图片 /// </summary> /// <param name=&quo ...
- JAVA线程锁-读写锁应用,简单的缓存系统
在JAVA1.5版本以后,JAVA API中提供了ReadWriteLock,此类是一个接口,在它的实现类中ReentrantReadWriteLock中有这样一段代码 class CachedDat ...
- SoapUI 利用SoapUI进行简单的接口并发测试
利用SoapUI进行简单的接口并发测试 by:授客 QQ:1033553122 测试环境: SoapUI Pro 5.1.2 步骤如下 1. 把请求添加到测试套件 1.1. 途径1 1.新 ...
- Python 利用Python编写简单网络爬虫实例3
利用Python编写简单网络爬虫实例3 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://bbs.51testing. ...
- Python 利用Python编写简单网络爬虫实例2
利用Python编写简单网络爬虫实例2 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://www.51testing. ...
- 利用python进行简单的图像处理:包括打开,显示以及保存图像
利用python进行简单的图像处理:包括打开,显示以及保存图像 利用PIL处理 PIL(python image library) 是python用于图片处理的package.但目前这个package ...
- Java实现一个简单的缓存方法
缓存是在web开发中经常用到的,将程序经常使用到或调用到的对象存在内存中,或者是耗时较长但又不具有实时性的查询数据放入内存中,在一定程度上可以提高性能和效率.下面我实现了一个简单的缓存,步骤如下. 创 ...
- 0209利用innobackupex进行简单数据库的备份
利用innobackupex进行简单数据库的备份yum install perl-DBIyum install perl-DBD-MySQLyum install perl-Time-HiResyum ...
随机推荐
- Android开发学习之路--Activity之四种启动模式
后天终于可以回家了,马上就要过年了,趁着年底打酱油的模式,就多学习学习,然后记录记录吧.关于Activity已经学习了七七八八了,还有就是Activity的四种启动模式了,它们分别为,standard ...
- Android初级教程实现电话录音
需求:设置来电后自动录音. 首先设置一个按钮,代码很简单这里就不再给出. 建一个类,RecorderServicer extends Service package com.ydl.recorder; ...
- 【一天一道LeetCode】#226. Invert Binary Tree
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 来源:http ...
- (八十一)利用系统自带App来实现导航
利用系统的地图App进行导航,只需要传入起点和终点.启动参数,调用MKMapItem的类方法openMapWithItems:launchOptions:来实现定位,调用此方法后会打开系统的地图App ...
- J2EE Exception:WELD-001408 Unsatisfied dependencies for type [SelectModelFactory] with qualifiers [@
Issue: When you inject some resources using @Inject, you may encounter following exception after app ...
- Spring MVC 入门示例讲解 - howtodoinjava
在本例中,我们将使用Spring MVC框架构建一个入门级web应用程序.Spring MVC 是Spring框架最重要的的模块之一.它以强大的Spring IoC容器为基础,并充分利用容器的特性来简 ...
- iOS中 超简单抽屉效果(MMDrawerController)的实现
ios开发中,展示类应用通常要用到抽屉效果,由于项目需要,本人找到一个demo,缩减掉一些不常用的功能,整理出一个较短的实例. 首先需要给工程添加第三方类库 MMDrawerController: 这 ...
- Android图片色彩变幻
最近在做图片相关的应用,所以就各方积累到一些常用的操作,一般来说会有多种方式来实现这一功能,比如 采用色度变换 采用ColorMatrix颜色矩阵 采用对像素点的直接操作 等等,今天就复习一下第一种方 ...
- gcov 统计 inline 函数
gcov 统计 inline 函数 (金庆的专栏) gcov可以统计 inline 函数,可是实际使用中碰到统计次数总是为0的现象. 假设类A的头文件为 A.h, 实现文件为 A.cpp. A 有几 ...
- C++ Primer 有感(命名的强制类型转换)
C++四种强制类型转换的方法以及其应用场合,之前有看过这个知识点,但是,面试的时候怎么想也就没有写的很全面,于是,这里整理一下: C++中的四种强制类型转换除了具有C语言强制类型转换的功能外,还可提供 ...