AVL树的介绍

AVL树是高度平衡的而二叉树。它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。

上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1;而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1)。

AVL树的Java实现

1. 节点

1.1 节点定义

public class AVLTree<T extends Comparable<T>> {
private AVLTreeNode<T> mRoot; // 根结点 // AVL树的节点(内部类)
class AVLTreeNode<T extends Comparable<T>> {
T key; // 关键字(键值)
int height; // 高度
AVLTreeNode<T> left; // 左孩子
AVLTreeNode<T> right; // 右孩子 public AVLTreeNode(T key, AVLTreeNode<T> left, AVLTreeNode<T> right) {
this.key = key;
this.left = left;
this.right = right;
this.height = 0;
}
} ......
}

AVLTree是AVL树对应的类,而AVLTreeNode是AVL树节点,它是AVLTree的内部类。AVLTree包含了AVL树的根节点,AVL树的基本操作也定义在AVL树中。AVLTreeNode包括的几个组成对象:
(01) key -- 是关键字,是用来对AVL树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
(04) height -- 是高度。

1.2 树的高度

/*
* 获取树的高度
*/
private int height(AVLTreeNode<T> tree) {
if (tree != null)
return tree.height; return 0;
} public int height() {
return height(mRoot);
}

关于高度,有的地方将"空二叉树的高度是-1",而本文采用维基百科上的定义:树的高度为最大层次。即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推)。

1.3 比较大小

/*
* 比较两个值的大小
*/
private int max(int a, int b) {
return a>b ? a : b;
}

2. 旋转

如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:

上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:

上面的两张图都是为了便于理解,而列举的关于"失去平衡的AVL树"的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:

(1) LL:LeftLeft,也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面LL情况中,由于"根节点(8)的左子树(4)的左子树(2)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(2) LR:LeftRight,也称为"左右"。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面LR情况中,由于"根节点(8)的左子树(4)的左子树(6)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(3) RL:RightLeft,称为"右左"。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面RL情况中,由于"根节点(8)的右子树(12)的左子树(10)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

(4) RR:RightRight,称为"右右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面RR情况中,由于"根节点(8)的右子树(12)的右子树(14)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。AVL失去平衡之后,可以通过旋转使其恢复平衡,下面分别介绍"LL(左左),LR(左右),RR(右右)和RL(右左)"这4种情况对应的旋转方法。

2.1 LL的旋转

LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:

图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。
对于LL旋转,你可以这样理解为:LL旋转是围绕"失去平衡的AVL根节点"进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着"左孩子,即k1"使劲摇。将k1变成根节点,k2变成k1的右子树,"k1的右子树"变成"k2的左子树"。

LL的旋转代码

/*
* LL:左左对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
private AVLTreeNode<T> leftLeftRotation(AVLTreeNode<T> k2) {
AVLTreeNode<T> k1; k1 = k2.left;
k2.left = k1.right;
k1.right = k2; k2.height = max( height(k2.left), height(k2.right)) + 1;
k1.height = max( height(k1.left), k2.height) + 1; return k1;
}

2.2 RR的旋转

理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:

图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。

RR的旋转代码

/*
* RR:右右对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
private AVLTreeNode<T> rightRightRotation(AVLTreeNode<T> k1) {
AVLTreeNode<T> k2; k2 = k1.right;
k1.right = k2.left;
k2.left = k1; k1.height = max( height(k1.left), height(k1.right)) + 1;
k2.height = max( height(k2.right), k1.height) + 1; return k2;
}

2.3 LR的旋转

LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:

第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。

LR的旋转代码

/*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
private AVLTreeNode<T> leftRightRotation(AVLTreeNode<T> k3) {
k3.left = rightRightRotation(k3.left); return leftLeftRotation(k3);
}

2.4 RL的旋转

RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

第一次旋转是围绕"k3"进行的"LL旋转",第二次是围绕"k1"进行的"RR旋转"。

RL的旋转代码

/*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
private AVLTreeNode<T> rightLeftRotation(AVLTreeNode<T> k1) {
k1.right = leftLeftRotation(k1.right); return rightRightRotation(k1);
}

3. 插入

插入节点的代码

当插入的元素存在,这里不做处理

public AvlNode<T> insert(T x,AvlNode<T> t)
{
  if(t==null)
    return new AvlNode<>(x,null,null);
  
  int r=x.compareTo(t.element);
  if(r<0)
    t.left=insert(x,t.left);
  else if(r>0)
    t.right=insert(x,t.right);
  else
    ;//重复,不做

  return balance(t);
}

4. 删除

删除节点的代码

这里用的是懒惰删除。当t没有孩子,则直接删除即可,当t有一个孩子,则用孩子代替此节点即可,当t有两个孩子的时候,用右子树中的最小节点的数据代替t中的数据,但是

t的指针不变,然后删除右子树的那个最小数据节点。(因为t两个孩子时,指针不能改变,所以只能改变数据)

public AvlNode<T> remove(T x,AvlNode<T> t){
  if(t==null)
    return t;
  
int r=x.compareTo(t.element);

if(r<0)
  t.left=remove(x,t.left);
else if(r>0)
  t.right=remove(x,t.right);
//找到节点以后
else if(t.left!=null&&t.right!=null)//两个儿子
{
  t.element=findMin(t.right).element;
  t.right=remove(t.element,t.right);
}
else //一个儿子。这种情况同时也包含了没有孩子的情况。左节点不为空就用左节点代替,如果左节点为空,则用右节点代替,右节点也可能为空。
  t=(t.left!=null)?t.left:t.right;

return balance(t);

}

balance函数如下:

    public AvlNode<T> balance(AvlNode<T> t){
if(t==null)
return t;
//左子树比右子树高,左右或左左
if(height(t.left)-height(t.right)==2){
//左子树的左子树比左子树的右子树高,左左;
//这里等号是为了单旋转,双旋转也是可以的,单旋简单
        /*
          等号出现,表示左子树的左子树和左子树的右子树高度相等,但是t的左子树高度大于右子树,所以,这是删除元素造成的。
          插入是不能做成这种情况,因为插入之前就会是不平衡的。这里使用单旋转,简单。
        */
if(height(t.left.left)>=height(t.left.right)){
t=leftLeftRotation(t);
}else{
//左右,双旋转
t=leftRightRotation(t);
}
}else //右子树比左子树高,右右或右左
if(height(t.right)-height(t.left)==2){
if(height(t.right.right)>=height(t.right.left))
t=rightRightRotation(t);//右右
else
t=rightLeftRotation(t);
} t.height=Math.max(height(t.left), height(t.right))+1; return t;
}

完整代码只要在上面的AvlTree类中将这些方法加入就行了

例子

1. 新建AVL树

2. 依次添加"3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9" 到AVL树中。

2.01 添加3,2
添加3,2都不会破坏AVL树的平衡性。

2.02 添加1
添加1之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

2.03 添加4
添加4不会破坏AVL树的平衡性。

2.04 添加5
添加5之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

2.05 添加6
添加6之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

2.06 添加7
添加7之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

2.07 添加16
添加16不会破坏AVL树的平衡性。

2.08 添加15
添加15之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

2.09 添加14
添加14之后,AVL树失去平衡(RL),此时需要对AVL树进行旋转(RL旋转)。旋转过程如下:

2.10 添加13
添加13之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

2.11 添加12
添加12之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

2.12 添加11
添加11之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

2.13 添加10
添加10之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

2.14 添加8
添加8不会破坏AVL树的平衡性。

2.15 添加9
但是添加9之后,AVL树失去平衡(LR),此时需要对AVL树进行旋转(LR旋转)。旋转过程如下:

3. 打印树的信息

输出下面树的信息:

前序遍历: 7 4 2 1 3 6 5 13 11 9 8 10 12 15 14 16 
中序遍历: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
后序遍历: 1 3 2 5 6 4 8 10 9 12 11 14 16 15 13 7 
高度: 5
最小值: 1
最大值: 16

4. 删除节点8

删除操作并不会造成AVL树的不平衡。

删除节点8之后,再打印该AVL树的信息。
高度: 5
中序遍历: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

转载:http://www.cnblogs.com/skywang12345/p/3577479.html

AVL树之 Java的实现的更多相关文章

  1. AVL树的JAVA实现及AVL树的旋转算法

    1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. ...

  2. AVL树的Java实现

    AVL树:平衡的二叉搜索树,其子树也是AVL树. 以下是我实现AVL树的源码(使用了泛型): import java.util.Comparator; public class AVLTree< ...

  3. AVL树(三)之 Java的实现

    概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍 ...

  4. AVL树(C++&Java)

    目录 AVL Tree精讲专题 前言 一.AVL Tree for CPP(Coding) 1.AVL树原型 2.旋转的四种方式 二.完整版AVL Tree的CPP和JAVA实现 AVL Tree C ...

  5. 数据结构——二叉查找树、AVL树

    二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列! 插入:直接插入,插入后一定为根节点 查找:直接查找 删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父 ...

  6. AVL树原理及实现(C语言实现以及Java语言实现)

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好 ...

  7. AVL树----java

                                                                                        AVL树----java AVL ...

  8. 【Java】 大话数据结构(12) 查找算法(3) (平衡二叉树(AVL树))

    本文根据<大话数据结构>一书及网络资料,实现了Java版的平衡二叉树(AVL树). 平衡二叉树介绍 在上篇博客中所实现的二叉排序树(二叉搜索树),其查找性能取决于二叉排序树的形状,当二叉排 ...

  9. Java数据结构和算法(七)--AVL树

    在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树 ...

随机推荐

  1. ASP.net 路径问题 详解

    各位有没有碰到在日常工作中经常在路径设置的时候把 "~/ ../ .../ . / .http://www.cnblogs.com/"这些符号搞混搞乱了?偶尔还会因路径的问题郁闷了 ...

  2. How to Find the Self Service Related File Location and Versions

     How to Find the Self Service Related File Location and Versions (文档 ID 781385.1) In this Document ...

  3. Docker教程:Docker镜像导出及迁移

    http://blog.csdn.net/pipisorry/article/details/51330126 Docker目录分析 安装docker时,默认的安装位置是/var/lib/docker ...

  4. 【一天一道LeetCode】#258. Add Digits

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  5. 盘点:2016中国百强地产CIO高峰论坛的8大看点

    2016年中国百强地产CIO高峰论坛将于2016年6月16日至18日在浙江湖州举行,届时百余位地产公司CIO将出席大会,共同探讨新形势下如何重塑IT价值,增强地产公司的市场竞争力和盈利能力. 此次大会 ...

  6. 文件夹或者文件比对工具 Beyond Compare

    文件夹或者文件比对工具 Beyond Compare 之前有同事离职了.       没有工作交接.       同事的代码有一部分也没有提交版本库.       结果就是线上的代码和版本库中的文件数 ...

  7. DB Query Analyzer 6.04 is distributed, 78 articles concerned have been published

        DB Query Analyzer 6.04 is distributed,78 articles concerned have been published  DB Query Analyz ...

  8. Accounting Flexfield Setup and Usage (Doc ID 124333.1)

    APPLIES TO:Oracle General Ledger - Version 11.5.10.2 to 12.1.3 [Release 11.5.10 to 12.1] Information ...

  9. CUDA学习,使用shared memory实现Reverse Array

  10. 从Perforce到Git的迁移

    公司经过多次兼并.收购之后,开发团队使用的工具自然会出现鱼龙混杂的现象.就拿源代码管理工具来说,我们同时在使用的就有Perforce.Team Foundation.Subversion等.为了节省成 ...