背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别。

这种底层机制,很有必要通过跟踪源码来进行分析。

参考

ReentrantLock实现原理及源码分析

源码分析

接下来我们从源码角度来看看ReentrantLock的实现原理,它是如何保证可重入性,又是如何实现公平锁的。

  ReentrantLock是基于AQS的,AQS是Java并发包中众多同步组件的构建基础,它通过一个int类型的状态变量state和一个FIFO队列来完成共享资源的获取,线程的排队等待等。AQS是个底层框架,采用模板方法模式,它定义了通用的较为复杂的逻辑骨架,比如线程的排队,阻塞,唤醒等,将这些复杂但实质通用的部分抽取出来,这些都是需要构建同步组件的使用者无需关心的,使用者仅需重写一些简单的指定的方法即可(其实就是对于共享变量state的一些简单的获取释放的操作)。

  上面简单介绍了下AQS,详细内容可参考本人的另一篇文章《Java并发包基石-AQS详解》,此处就不再赘述了。先来看常用的几个方法,我们从上往下推。

无参构造器(默认为非公平锁)

public ReentrantLock() {
sync = new NonfairSync();//默认是非公平的
}

sync是ReentrantLock内部实现的一个同步组件,它是Reentrantlock的一个静态内部类,继承于AQS,后面我们再分析。

  带布尔值的构造器(是否公平)

public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();//fair为true,公平锁;反之,非公平锁
}

看到了吧,此处可以指定是否采用公平锁,FailSync和NonFailSync亦为Reentrantlock的静态内部类,都继承于Sync

小结

  其实从上面这写方法的介绍,我们都能大概梳理出ReentrantLock的处理逻辑,其内部定义了三个重要的静态内部类,Sync,NonFairSync,FairSync。Sync作为ReentrantLock中公用的同步组件,继承了AQS(要利用AQS复杂的顶层逻辑嘛,线程排队,阻塞,唤醒等等);NonFairSync和FairSync则都继承Sync,调用Sync的公用逻辑,然后再在各自内部完成自己特定的逻辑(公平或非公平)。

 NonFairSync(非公平可重入锁)

static final class NonfairSync extends Sync {//继承Sync
private static final long serialVersionUID = 7316153563782823691L;
/** 获取锁 */
final void lock() {
if (compareAndSetState(0, 1))//CAS设置state状态,若原值是0,将其置为1
setExclusiveOwnerThread(Thread.currentThread());//将当前线程标记为已持有锁
else
acquire(1);//若设置失败,调用AQS的acquire方法,acquire又会调用我们下面重写的tryAcquire方法。这里说的调用失败有两种情况:1当前没有线程获取到资源,state为0,但是将state由0设置为1的时候,其他线程抢占资源,将state修改了,导致了CAS失败;2 state原本就不为0,也就是已经有线程获取到资源了,有可能是别的线程获取到资源,也有可能是当前线程获取的,这时线程又重复去获取,所以去tryAcquire中的nonfairTryAcquire我们应该就能看到可重入的实现逻辑了。
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);//调用Sync中的方法
}
}

nonfairTryAcquire()

final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();//获取当前线程
int c = getState();//获取当前state值
if (c == 0) {//若state为0,意味着没有线程获取到资源,CAS将state设置为1,并将当前线程标记我获取到排他锁的线程,返回true
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {//若state不为0,但是持有锁的线程是当前线程
int nextc = c + acquires;//state累加1
if (nextc < 0) // int类型溢出了
throw new Error("Maximum lock count exceeded");
setState(nextc);//设置state,此时state大于1,代表着一个线程多次获锁,state的值即是线程重入的次数
return true;//返回true,获取锁成功
}
return false;//获取锁失败了
}

简单总结下流程:(ps:获取锁的过程,也是共享锁的实现过程)

    1.先获取state值,若为0,意味着此时没有线程获取到资源,CAS将其设置为1,设置成功则代表获取到排他锁了;

    2.若state大于0,肯定有线程已经抢占到资源了,此时再去判断是否就是自己抢占的,是的话,state累加,返回true,重入成功,state的值即是线程重入的次数;

    3.其他情况,则获取锁失败。

  来看看可重入公平锁的处理逻辑

  FairSync

static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L; final void lock() {
acquire(1);//直接调用AQS的模板方法acquire,acquire会调用下面我们重写的这个tryAcquire
} protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();//获取当前线程
int c = getState();//获取state值
if (c == 0) {//若state为0,意味着当前没有线程获取到资源,那就可以直接获取资源了吗?NO!这不就跟之前的非公平锁的逻辑一样了嘛。看下面的逻辑
if (!hasQueuedPredecessors() &&//判断在时间顺序上,是否有申请锁排在自己之前的线程,若没有,才能去获取,CAS设置state,并标记当前线程为持有排他锁的线程;反之,不能获取!这即是公平的处理方式。
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {//重入的处理逻辑,与上文一致,不再赘述
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}

 可以看到,公平锁的大致逻辑与非公平锁是一致的,不同的地方在于有了!hasQueuedPredecessors()这个判断逻辑,即便state为0,也不能贸然直接去获取,要先去看有没有还在排队的线程,若没有,才能尝试去获取,做后面的处理。反之,返回false,获取失败。

  看看这个判断是否有排队中线程的逻辑

  hasQueuedPredecessors()

public final boolean hasQueuedPredecessors() {
Node t = tail; // 尾结点
Node h = head;//头结点
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());//判断是否有排在自己之前的线程
}

 需要注意的是,这个判断是否有排在自己之前的线程的逻辑稍微有些绕,我们来梳理下,由代码得知,有两种情况会返回true,我们将此逻辑分解一下(注意:返回true意味着有其他线程申请锁比自己早,需要放弃抢占)

  1. h !=t && (s = h.next) == null,这个逻辑成立的一种可能是head指向头结点,tail此时还为null。考虑这种情况:当其他某个线程去获取锁失败,需构造一个结点加入同步队列中(假设此时同步队列为空),在添加的时候,需要先创建一个无意义傀儡头结点(在AQS的enq方法中,这是个自旋CAS操作),有可能在将head指向此傀儡结点完毕之后,还未将tail指向此结点。很明显,此线程时间上优于当前线程,所以,返回true,表示有等待中的线程且比自己来的还早。

  2.h != t && (s = h.next) != null && s.thread != Thread.currentThread()。同步队列中已经有若干排队线程且当前线程不是队列的老二结点,此种情况会返回true。假如没有s.thread !=Thread.currentThread()这个判断的话,会怎么样呢?若当前线程已经在同步队列中是老二结点(头结点此时是个无意义的傀儡结点),此时持有锁的线程释放了资源,唤醒老二结点线程,老二结点线程重新tryAcquire(此逻辑在AQS中的acquireQueued方法中),又会调用到hasQueuedPredecessors,不加s.thread !=Thread.currentThread()这个判断的话,返回值就为true,导致tryAcquire失败。

ps:一句话就是检查当前线程前面有没有等待的线程

  最后,来看看ReentrantLock的tryRelease,定义在Sync中

protected final boolean tryRelease(int releases) {
int c = getState() - releases;//减去1个资源
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
//若state值为0,表示当前线程已完全释放干净,返回true,上层的AQS会意识到资源已空出。若不为0,则表示线程还占有资源,只不过将此次重入的资源的释放了而已,返回false。
if (c == 0) {
free = true;//
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}

总结

ReentrantLock是一种可重入的,可实现公平性的互斥锁,它的设计基于AQS框架,可重入和公平性的实现逻辑都不难理解,每重入一次,state就加1,当然在释放的时候,也得一层一层释放。至于公平性,在尝试获取锁的时候多了一个判断:是否有比自己申请早的线程在同步队列中等待,若有,去等待;若没有,才允许去抢占。

ReentrantLock原理

ps:这篇博客讲起来更加的通俗易懂

AQS使用一个FIFO的队列表示排队等待锁的线程,队列头节点称作“哨兵节点”或者“哑节点”,它不与任何线程关联。其他的节点与等待线程关联,每个节点维护一个等待状态waitStatus

ReentrantLock的基本实现可以概括为:先通过CAS尝试获取锁。如果此时已经有线程占据了锁,那就加入AQS队列并且被挂起。当锁被释放之后,排在CLH队列队首的线程会被唤醒,然后CAS再次尝试获取锁。在这个时候,如果:

非公平锁:如果同时还有另一个线程进来尝试获取,那么有可能会让这个线程抢先获取;

公平锁:如果同时还有另一个线程进来尝试获取,当它发现自己不是在队首的话,就会排到队尾,由队首的线程获取到锁。(区别)

可重入锁。可重入锁是指同一个线程可以多次获取同一把锁。ReentrantLock和synchronized都是可重入锁。

可中断锁。可中断锁是指线程尝试获取锁的过程中,是否可以响应中断。synchronized是不可中断锁,而ReentrantLock则提供了中断功能。

公平锁与非公平锁。公平锁是指多个线程同时尝试获取同一把锁时,获取锁的顺序按照线程达到的顺序,而非公平锁则允许线程“插队”。synchronized是非公平锁,而ReentrantLock的默认实现是非公平锁,但是也可以设置为公平锁。

lock()

1. 第一步。尝试去获取锁。如果尝试获取锁成功,方法直接返回。

2. 第二步,入队。由于上文中提到线程A已经占用了锁,所以B和C执行tryAcquire失败,并且入等待队列。如果线程A拿着锁死死不放,那么B和C就会被挂起。

3. 第三步,挂起。B和C相继执行acquireQueued(final Node node, int arg)。这个方法让已经入队的线程尝试获取锁,若失败则会被挂起。

线程入队后能够挂起的前提是,它的前驱节点的状态为SIGNAL,它的含义是“Hi,前面的兄弟,如果你获取锁并且出队后,记得把我唤醒!”。所以shouldParkAfterFailedAcquire会先判断当前节点的前驱是否状态符合要求,若符合则返回true,然后调用parkAndCheckInterrupt,将自己挂起。如果不符合,再看前驱节点是否>0(CANCELLED),若是那么向前遍历直到找到第一个符合要求的前驱,若不是则将前驱节点的状态设置为SIGNAL。

整个流程中,如果前驱结点的状态不是SIGNAL,那么自己就不能安心挂起,需要去找个安心的挂起点,同时可以再尝试下看有没有机会去尝试竞争锁。

最终队列可能会如下图所示

static final class Node {
/** waitStatus值,表示线程已被取消(等待超时或者被中断)*/
static final int CANCELLED = 1;
/** waitStatus值,表示后继线程需要被唤醒(unpaking)*/
static final int SIGNAL = -1;
/**waitStatus值,表示结点线程等待在condition上,当被signal后,会从等待队列转移到同步到队列中 */
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
/** waitStatus值,表示下一次共享式同步状态会被无条件地传播下去
static final int PROPAGATE = -3;
/** 等待状态,初始为0 */
volatile int waitStatus;
/**当前结点的前驱结点 */
volatile Node prev;
/** 当前结点的后继结点 */
volatile Node next;
/** 与当前结点关联的排队中的线程 */
volatile Thread thread;
/** ...... */
}

unlock()

如果理解了加锁的过程,那么解锁看起来就容易多了。流程大致为先尝试释放锁,若释放成功,那么查看头结点的状态是否为SIGNAL,如果是则唤醒头结点的下个节点关联的线程,如果释放失败那么返回false表示解锁失败。这里我们也发现了,每次都只唤起头结点的下一个节点关联的线程。

用一张流程图总结一下非公平锁的获取锁的过程。

(转)ReentrantLock实现原理及源码分析的更多相关文章

  1. ReentrantLock实现原理及源码分析

    ReentrantLock是Java并发包中提供的一个可重入的互斥锁.ReentrantLock和synchronized在基本用法,行为语义上都是类似的,同样都具有可重入性.只不过相比原生的Sync ...

  2. ConcurrentHashMap实现原理及源码分析

    ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对Ha ...

  3. HashMap和ConcurrentHashMap实现原理及源码分析

    HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...

  4. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  5. 【转】HashMap实现原理及源码分析

    哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景极其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出 ...

  6. 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

    原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...

  7. 《深入探索Netty原理及源码分析》文集小结

    <深入探索Netty原理及源码分析>文集小结 https://www.jianshu.com/p/239a196152de

  8. HashMap实现原理及源码分析之JDK8

    继续上回HashMap的学习 HashMap实现原理及源码分析之JDK7 转载 Java8源码-HashMap  基于JDK8的HashMap源码解析  [jdk1.8]HashMap源码分析 一.H ...

  9. 【OpenCV】SIFT原理与源码分析:关键点描述

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SI ...

随机推荐

  1. dubbo-源码分析Consumer

    counsumer使用服务的时候会在xml中配置<dubbo:reference> dubbo在spring.handles里的NamespaceHandle又有如下配置: registe ...

  2. scrollview嵌套下拉控件嵌套recyclerview(不动第三方原基础自定义)

    相信会碰到很多类似的需求,一个列表控件,然后控件上方的一个头部需要自定义,这样就不好有时候也不能加在列表控件的头部了,那必须得嵌套一层scrollview了,没毛病,那么一般的列表控件都是有上拉下拉的 ...

  3. pythonmysql运行报错解决过程中遇到的其中一个报错解决文章来源

    本文章仅记录下面报错的解决文章来源:error: command 'C:\Users\Administrator\AppData\Local\Programs\Common\Micr osoft\Vi ...

  4. 微软与开源干货对比篇_PHP和 ASP.NET在 Session实现和管理机制上差异

    微软与开源干货对比篇_PHP和 ASP.NET在 Session实现和管理机制上差异 前言:由于开发人员要靠工具吃饭,可能和开发工具.语言.环境呆的时间比和老婆孩子亲人在一起的时间还多,所以每个人或多 ...

  5. SQLServer创建用户自定义数据库用户

    创建用户自定义数据库用户注意事项 如果已忽略 FOR LOGIN,则新的数据库用户将被映射到同名的SQL Server登录名. 默认架构将是服务器为此数据库用户解析对象名时将搜索的第一个架构. 除非另 ...

  6. [已解决]ValueError: row index was 65536, not allowed by .xls format

    报错: ValueError: row index was 65536, not allowed by .xls format 解决方案: xlrd和xlwt处理的是xls文件,单个sheet最大行数 ...

  7. tensorflow 训练之tensorboard使用

    1.add saclar and histogram tf.summary.scalar('mean', mean) tf.summary.histogram('histogram', var) 2. ...

  8. JQuery:怎么动态切换一个元素的显示、隐藏呢?原来隐藏就显示,原来显示就隐藏

    使用toggle() 方法:<script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"& ...

  9. zcu102 hdmi example(一)

    1,概述 有一个计划是打算做一个摄像头的驱动与显示. 但是实际上手上只有一个zcu102开发板,没有摄像头,也没有上位机,自己也不会写.所以就将方案阉割成将录制好的视频放在SD卡里面,然后从SD卡里面 ...

  10. Ubuntu安装Navicat 12 for MySQL

    环境准备 要想运行Navicat,必须先安装Wine,这个可以使用下面的命令来安装Wine: ubuntu@ubuntu ~ $ sudo apt-get install wine-stable 安装 ...