[BZOJ 1040][ZJOI2008]骑士
1040: [ZJOI2008]骑士
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 5403 Solved: 2060
[Submit][Status][Discuss]Description
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各
界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境
中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一
个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一
些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出
征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有
的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的
情况),并且,使得这支骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战
斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。Input
第一行包含一个正整数N,描述骑士团的人数。接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力
和他最痛恨的骑士。Output
应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。
Sample Input
3
10 2
20 3
30 1Sample Output
30HINT
N ≤ 1 000 000,每名骑士的战斗力都是不大于 1 000 000的正整数。
题解
分析题意可以得到这应该是个最大权独立集...
然而普适的最大权独立集问题并不可做...这个问题肯定有特殊的地方. 我们发现每个点主动连出去的边有且仅有一条, 我们可以发现这是个环套树.
如果是树的话直接一个 $DP$ 怼上去就可以了, 而对于环套树, 我们可以先进行一遍 $DFS$ 找找是否有环, 没有环直接按树来 $DP$ , 如果有环的话, 任意选一条边断掉转化成树, 标记这条边连接的两个结点, 两个结点中强制某一个不能选, $DP$ 一遍, 换另一个结点强制不选再跑一遍, 在两种情况下取最大值.
断边的过程可以通过维护全局标记实现, 对于与全局标记相等的边直接不走就可以了, 对于强制不选, 则可以在跑一遍 $DP$ 后强行将强制不选的那个结点选中时得到的最大值赋为 $-\infty$ 即可
参考代码
#include <cstdio>
#include <cstring>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm> const int MAXN=1e6+; struct Edge{
int from;
int to;
int ID;
Edge* next;
};
Edge E[MAXN*];
Edge* head[MAXN];
Edge* top=E; int n;
int disableV;
int disableE;
int cut1,cut2;
long long ans,tmp;
bool visited[MAXN];
long long val[MAXN];
long long dp[MAXN][]; void DP(int,int);
void DFS(int,int);
void Initialize();
void Insert(int,int,int); int main(){
Initialize();
for(int i=;i<=n;i++){
if(visited[i])
continue;
else{
DFS(i,);
disableV=cut1;
DP(i,);
tmp=std::max(dp[i][],dp[i][]);
disableV=cut2;
DP(i,);
tmp=std::max(tmp,std::max(dp[i][],dp[i][]));
ans+=tmp;
}
}
printf("%lld\n",ans);
return ;
} void DFS(int root,int prt){
visited[root]=true;
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->ID==prt)
continue;
else if(visited[i->to]){
cut1=root;
cut2=i->to;
disableE=i->ID;
}
else
DFS(i->to,i->ID);
}
} void DP(int root,int prt){
dp[root][]=;
dp[root][]=val[root];
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->ID==disableE||i->ID==prt)
continue;
DP(i->to,i->ID);
dp[root][]+=std::max(dp[i->to][],dp[i->to][]);
dp[root][]+=dp[i->to][];
}
if(root=disableV)
dp[root][]=LLONG_MIN;
} void Initialize(){
scanf("%d",&n);
int tmp;
for(int i=;i<=n;i++){
scanf("%d%d",val+i,&tmp);
Insert(i,tmp,i);
Insert(tmp,i,i);
}
} inline void Insert(int from,int to,int ID){
top->to=to;
top->ID=ID;
top->from=from;
top->next=head[from];
head[from]=top++;
}
Backup
[BZOJ 1040][ZJOI2008]骑士的更多相关文章
- BZOJ 1040: [ZJOI2008]骑士 基环加外向树
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1190 Solved: 465[Submit][Status] ...
- bzoj 1040: [ZJOI2008]骑士 環套樹DP
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1755 Solved: 690[Submit][Status] ...
- bzoj 1040: [ZJOI2008]骑士 树形dp
题目链接 1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3054 Solved: 1162[Submit][S ...
- Bzoj 1040 [ZJOI2008]骑士 题解
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5368 Solved: 2044[Submit][Status ...
- [BZOJ 1040] [ZJOI2008] 骑士 【基环+外向树DP】
题目链接:BZOJ - 1040 题目分析 这道题目的模型就是一个图,不一定联通,每个连通块的点数等于边数. 每个连通块都是一个基环+外向树.即树上增加了一条边. 如果是树,就可以直接树形DP了.然而 ...
- bzoj 1040 [ZJOI2008]骑士(基环外向树,树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题意] 给一个基环森林,每个点有一个权值,求一个点集使得点集中的点无边相连且权 ...
- BZOJ 1040: [ZJOI2008]骑士(基环树dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题意: 思路: 这是基环树,因为每个人只会有一个厌恶的人,所以每个节点只会有一个父亲节点,但是 ...
- BZOJ 1040: [ZJOI2008]骑士 | 在基环外向树上DP
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题解: 我AC了 是自己写的 超开心 的 考虑断一条边 这样如果根节点不选答案一定正确 ...
- BZOJ 1040 [ZJOI2008]骑士 (基环树+树形DP)
<题目链接> 题目大意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的 ...
随机推荐
- JavaScript向select下拉框中添加和删除元素
JavaScript向select下拉框中添加和删除元素 1.说明 a 利用append()方法向下拉框中添加元素 b 利用remove()方法移除下拉框中最后一个元素 2.设计源码 < ...
- 小白学爬虫-设置Selenium+Chrome代理
微博登录限制了错误次数···加上Cookie大批账号被封需要从Cookie池中 剔除被封的账号··· 需要使用代理··· 无赖百度了大半天都是特么的啥玩意儿???结果换成了 Google手到擒来 分分 ...
- Redis进阶实践之十五 Redis-cli命令行工具使用详解第二部分(结束)
一.介绍 今天继续redis-cli使用的介绍,上一篇文章写了一部分,写到第9个小节,今天就来完成第二部分.话不多说,开始我们今天的讲解.如果要想看第一篇文章,地址如下:http: ...
- IOS开发之XCode学习007:UIWindow对象
此文学习来源为:http://study.163.com/course/introduction/1002858003.htm #import "AppDelegate.h" @i ...
- Linux进行AES加密每次结果都不一致并且解密失败报错
1. 现象 windows操作系统下进行"123456"的AES加密 encrypted message is below : QLNYZyjRnKF/zxAjzDt/lw== d ...
- 【CJOJ1372】【洛谷2730】【USACO 3.2.5】魔板
题面 Description 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方格都有一种颜色 ...
- Rotational Region CNN
R2CNN 论文Rotational Region CNN for Orientation Robust Scene Text Detection与RRPN(Arbitrary-Oriented Sc ...
- log4net应用实践(一)
1.背景 log4net库是Apache log4j框架在Microsoft .NET平台的实现,是一个帮助程序员将日志信息输出到各种目标(控制台.文件.数据库等)的工具.它是.Net下一 ...
- ubuntu上修改root密码
ubuntu上修改root密码 author: headsen chen 2017-10-12 10:49:28 个人原创,转载请注明作者,出处. sudo passwd 两次输入想设置的r ...
- leetCode:461 汉明距离
汉明距离 两个整数之间的汉明距离指的是这两个数字对应二进制位不同的位置的数目. 给出两个整数 x 和 y,计算它们之间的汉明距离. 思路: 当看到"对应二进制位不同的位置的数目"这 ...