视频学习来源

https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553

笔记

Adam,常用优化器之一

大多数情况下,adma速度较快,达到较优值迭代周期较少,

一般比SGD效果好

CNN应用于手写识别

import numpy as np
from keras.datasets import mnist #将会从网络下载mnist数据集
from keras.utils import np_utils
from keras.models import Sequential #序列模型
#Convolution2D 是2维卷积
#MaxPooling2D 是2维最大池化
#Flatten 数据扁平化(降维)
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten #在这里导入dropout
from keras.optimizers import Adam

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.

from ._conv import register_converters as _register_converters

Using TensorFlow backend.

#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#查看格式
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape) #转化为4维
#最后一个维度图片深度,1表示黑白,3表示彩色
#rgb是红绿蓝三通道0-255表示各个通道的颜色深度
#(60000,28,28)->(60000,28,28,1)
#-1表示自动设置
#除以255是做数据归一化处理
x_train=x_train.reshape(-1,28,28,1)/255.0 #转换数据格式
x_test=x_test.reshape(-1,28,28,1)/255.0 #转换数据格式
#label标签转换成 one hot 形式
y_train=np_utils.to_categorical(y_train,num_classes=10) #分成10类
y_test=np_utils.to_categorical(y_test,num_classes=10) #分成10类 #定义序列模型
model=Sequential() #第一个卷积层
#input_shape 输入平面
#filters 卷积核/滤波器个数
#kernel_size 卷积窗口大小
#strides 步长
#padding padding方式 same/valid
#activation 激活函数
model.add(Convolution2D(
input_shape=(28,28,1),#只需要在第一次添加输入平面
filters=32,
kernel_size=5,
strides=1,
padding='same',
activation='relu'
)) #平面大小28x28,用same padding得到的和上一次一样,也是28x28,有32个特征图
#池化后变成14x14,32个特征图 #第一个池化层
model.add(MaxPooling2D(
pool_size=2, # 池化窗口大小 2x2的窗口
strides=2,
padding='same'
)) #第二个卷积层
#filters=64 kernel_seize=5
model.add(Convolution2D(64,5,strides=1,padding='same',activation='relu')) #第二个卷积层后64个特征图,14x14
#第二个池化层后64个特征图,7x7 #第二个池化层
model.add(MaxPooling2D(2,2,'same')) #把第二个池化层的输出扁平化为1维
#长度 64x7x7
model.add(Flatten()) #第一个全连接层
#1024个神经元
model.add(Dense(1024,activation='relu')) #Dropout
#训练时百分之40个神经元不工作
model.add(Dropout(0.4)) #第二个全连接层
model.add(Dense(10,activation='softmax')) #定义优化器
#学习速率为10的负4次方
adam=Adam(lr=1e-4) #定义优化器,损失函数,训练效果中计算准确率
model.compile(
optimizer=adam, #sgd优化器
loss='categorical_crossentropy', #损失用交叉熵,速度会更快
metrics=['accuracy'], #计算准确率
) #训练
#六万张,每次训练64张,训练10个周期(六万张全部训练完算一个周期)
model.fit(x_train,y_train,batch_size=64,epochs=10) #评估模型
loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss',loss)
print('\ntest accuracy',accuracy) loss,accuracy=model.evaluate(x_train,y_train) print('\ntrain loss',loss)
print('\ntrain accuracy',accuracy)

x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 251s 4ms/step - loss: 0.3163 - acc: 0.9127
Epoch 2/10
60000/60000 [==============================] - 263s 4ms/step - loss: 0.0861 - acc: 0.9745
Epoch 3/10
60000/60000 [==============================] - 275s 5ms/step - loss: 0.0606 - acc: 0.9812
Epoch 4/10
60000/60000 [==============================] - 266s 4ms/step - loss: 0.0469 - acc: 0.9858
Epoch 5/10
60000/60000 [==============================] - 264s 4ms/step - loss: 0.0392 - acc: 0.9878
Epoch 6/10
60000/60000 [==============================] - 267s 4ms/step - loss: 0.0333 - acc: 0.9894
Epoch 7/10
60000/60000 [==============================] - 272s 5ms/step - loss: 0.0284 - acc: 0.9915
Epoch 8/10
60000/60000 [==============================] - 267s 4ms/step - loss: 0.0255 - acc: 0.9921
Epoch 9/10
60000/60000 [==============================] - 268s 4ms/step - loss: 0.0209 - acc: 0.9934
Epoch 10/10
60000/60000 [==============================] - 256s 4ms/step - loss: 0.0185 - acc: 0.9944
10000/10000 [==============================] - 14s 1ms/step
 
test loss 0.020771756899070168
 
test accuracy 0.9934
60000/60000 [==============================] - 78s 1ms/step
 
train loss 0.009774932912984514
 
train accuracy 0.9973666666666666

(五) Keras Adam优化器以及CNN应用于手写识别的更多相关文章

  1. Tensorflow实践:CNN实现MNIST手写识别模型

    前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...

  2. 简单认识Adam优化器

    转载地址 https://www.jianshu.com/p/aebcaf8af76e 基于随机梯度下降(SGD)的优化算法在科研和工程的很多领域里都是极其核心的.很多理论或工程问题都可以转化为对目标 ...

  3. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  4. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  5. TensorFlow 入门之手写识别CNN 三

    TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...

  6. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  7. 8.CNN应用于手写字识别

    import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.mode ...

  8. Keras手写识别例子(1)----softmax

    转自:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/#测试模型 下载数据: # downlo ...

  9. keras RAdam优化器使用教程, keras加载模型包含自定义优化器报错 如何解决?

    本文首发于个人博客https://kezunlin.me/post/c691f02b/,欢迎阅读最新内容! python keras RAdam tutorial and load custom op ...

随机推荐

  1. java实现开根号算法

    public static void main(String[] args) { long start = System.currentTimeMillis(); double target=9876 ...

  2. 初探奥尔良(Orleans)

    由于工作上关系目前经常被各种并发数据问题搞得焦头烂额,要么要性能舍弃数据上得一致性,要么要一致性但是却得到了特别糟糕的响应.难道鱼和熊掌真的无法兼得吗? 然后找到了类似奥尔良这种基于Actor模型的k ...

  3. 通过改进团队流程最大限度发挥Scrum的优势

    团队如何最大限度地发挥Scrum和敏捷的优势? 回想一下,Scrum团队在Scrum的框架内定义了自己的流程.这其中包括方法.工具和互动以及如何履行Scrum角色的职责.如何使用工件和事件等. 如何确 ...

  4. Thymeleaf【快速入门】

    前言:突然发现自己给自己埋了一个大坑,毕设好难..每一个小点拎出来都能当一个小题目(手动摆手..),没办法自己选的含着泪也要把坑填完..先一点一点把需要补充的知识学完吧.. Thymeleaf介绍 稍 ...

  5. SpringBoot自动配置原理

    前言 只有光头才能变强. 文本已收录至我的GitHub仓库,欢迎Star:https://github.com/ZhongFuCheng3y/3y 回顾前面Spring的文章(以学习的顺序排好): S ...

  6. Spring Boot整合Mybatis并完成CRUD操作

    MyBatis 是一款优秀的持久层框架,被各大互联网公司使用,本文使用Spring Boot整合Mybatis,并完成CRUD操作. 为什么要使用Mybatis?我们需要掌握Mybatis吗? 说的官 ...

  7. mybatis小结

    mybatis是Apache的一个开源项目ibatis,后由Google管理,目前在github上.MyBatis 是支持定制化SQL.存储过程以及高级映射的优秀的持久层框架. 一.mybatis解决 ...

  8. 使用bootstrap table 数据绑定

    1.最近一直在用bootstrap table 这个前端框架做项目,下面是使用bootstrap table 的一些总结 这个使用.Net 中MVC做的: 2.这个是基本的boostrap table ...

  9. Android之友盟多渠道打包与数据统计

    文章大纲 一.多渠道打包与数据统计介绍二.友盟实现多渠道打包实战三.友盟数据统计实战四.项目源码下载五.参考文章   一.多渠道打包与数据统计介绍   多渠道打包,相信很多同学都知道.在Android ...

  10. Android 里的adb命令

    ADB的全称为Android Debug Bridge,就是起到调试桥的作用. adb调试手机需要把usb调试打开 Android studio模拟器有的也要把模拟器usb调试打开,工具要灵活运用, ...