MT【121】耐克数列的估计
已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____
解:容易用累乘法得到$a_{n+1}=a_n+\dfrac{1}{a_n},n\in N^*,$两边平方得 $a_{n+1}^2=a_n^2+2+\dfrac{1}{a_n^2},$于是$a_{n+1}^2-a_{n}^2\ge2,$从而$a_{n+1}^2\ge2n+1,$即$a_{n+1}\ge\sqrt{2n+1}.$
又由于$a_{n+1}^2-a_n^2=2+\dfrac{1}{a_n^2},$ 于是
\[\begin{split} a_{n+1}^2-a_1^2&=2n+\dfrac{1}{a_1^2}+\dfrac{1}{a_2^2}+\cdots +\dfrac{1}{a_n^2}\\ &\le2n+1+\dfrac 13+\cdots +\dfrac{1}{2n-1}\\ & \leqslant 2n+1+\dfrac 12+\cdots +\dfrac 1n \\ &\le 2n+\ln n+1,\end{split} \]因此$$a_{n+1}\le\sqrt{2n+\ln n+2}.$$
综上$$\sqrt{2n+1}\le a_{n+1}\le\sqrt{2n+\ln n+2},$$进而可得
$\sqrt{4033}\le a_{2017}\le \sqrt{4034+ln(2016)}$
注意到$ln(2016)<ln(2^{11})<ln(e^{11})=11,63^2=3969,64^2=4096$则$[a_{2017}]=63$
$\textbf{注:从上面的推导我们可以到这个数列通项的大致的估计}$
$\lim\limits_{n\to+\infty}\dfrac{a_n}{\sqrt n}=\sqrt 2.$
MT【121】耐克数列的估计的更多相关文章
- 【耐克】【空军一号 Nike Air Force 1】【软木塞】
[高帮 全白 36-45] [空军一号 低帮 36-46] [空军一号 36-45] [Nike Air Force 1 Flyknit 空军中帮飞线系列 全黑 36-44] [耐克空军一号 软木塞 ...
- MT【162】渐近估计
(2017北大优特测试第八题) 数列 \(\{a_n\}\) 满足 \(a_1=1\),\(a_{n+1}=a_n+\dfrac{1}{a_n}\),若 \(a_{2017}\in (k,k+1)\) ...
- 【耐克】【Air Max90 气垫跑鞋】
[max90 36-44] [加毛冬款 36-44] [黑白百搭款 36-44] [air max90 高帮 冬款 耐看百搭 36-44] [air max90 高帮 40-44] [Air Max9 ...
- MT【71】数列裂项放缩题
已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...
- 耐克的定制页用canvas如何实现....跪求前端大神指点。
选择鞋子的鞋底 鞋底会变色,也可以添加自己定制的id,这个东西看的是用canvas做的,但是小弟确实不知道怎么去做,求大神指点一二,不胜感激! nike的定制页地址:http://store.nike ...
- 短视频APP+不同类型社交应用发展分析+化妆品电商
短视频APP——昙花一现还是发展趋势? 在这个互联网与科技并行且飞速发展的时代,各种app不断涌入市场,其中短视频app便是一个典型,美拍,就成功入围2014年十大最火app.而短视频app也势必要成 ...
- python基础知识小结-运维笔记
接触python已有一段时间了,下面针对python基础知识的使用做一完整梳理:1)避免‘\n’等特殊字符的两种方式: a)利用转义字符‘\’ b)利用原始字符‘r’ print r'c:\now' ...
- css flex 兼容ios android--商品展示 添加购物车
https://blog.csdn.net/u010035608/article/details/52711248 <!DOCTYPE html> <html> <hea ...
- C#线程篇---Windows调度线程准则(3)
Windows本身就是一个抢占式操作系统,它的实现,必定有某种算法在里面,比如什么时候调度哪些线程,需要花费多长时间等问题. 我们时时在用Windows,作为程序员,我们有必要知道其中最贴近我们的算法 ...
随机推荐
- C++构造函数和析构函数什么情况下会用
析构函数: 1. 对象生命周期结束,被销毁时: 2. delete 指向对象的指针时: 3. delete 指向基类对象的指针时,其析构函数是虚函数: 4. 在嵌套关系中,对象A是对象B的成员,当对象 ...
- Unity优化方向——优化Unity游戏中的脚本(译)
原文地址:https://unity3d.com/cn/learn/tutorials/topics/performance-optimization/optimizing-scripts-unity ...
- 小冷-wireshark的标志位的值是啥
小冷系列之 wireshark的标志位的值是啥,在用wireshark抓包时,发现Flags = 0x002(SYN),很好奇0x002是什么意思. 好不好先上图: 上图是一个三次握手第一次的标志位, ...
- 【snaptype nexus】搭建maven私服仓库
搭建本地开发私库,旨在解决本地开始受限于网络环境的问题:具体的搭建步骤主要包含以下几个步骤: 1.私服服务器使用的是ubuntu,首先下载安装包(版本号:2.12),下载地址:http://www.s ...
- Netty源码分析第4章(pipeline)---->第5节: 传播outbound事件
Netty源码分析第五章: pipeline 第五节: 传播outBound事件 了解了inbound事件的传播过程, 对于学习outbound事件传输的流程, 也不会太困难 在我们业务代码中, 有可 ...
- VMware vCenter Converter迁移Linux系统虚拟机
(一)简介VMware vCenter Converter Standalone,是一种用于将虚拟机和物理机转换为 VMware 虚拟机的可扩展解决方案.此外,还可以在 vCenter Server ...
- Prometheus 添加报警规则
https://prometheus.io/docs/prometheus/latest/migration/
- 服务器与Linux操作系统基础原理
1.服务器 2.Linux操作系统 1. 服务器 服务器定义与分类: 定义:一个管理资源并为用户提供服务的计算机软件. 按应用分类:通常分为文件服务器(能使用户在其它计算机访问文件),数据库服务器和应 ...
- Mac环境搭建以太坊私有链
原文地址: 石匠的blog 为了测试以太坊智能合约,最方便的是在本地搭建一个以太坊私有链.在mac上搭建环境主要需要以下步骤. geth安装 geth是go-ethereum的简写,是一个用go语言编 ...
- jenkins部署时遇到“似乎无法联网”,导致无法安装默认插件的解决方案
jenkins安装更新时,默认会检查网络连接,而默认的checkulr 是http://www.google.com/ ,国内是无法访问的,所以修改成任意可以访问的地址即可,比如http://www. ...