MT【121】耐克数列的估计
已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____
解:容易用累乘法得到$a_{n+1}=a_n+\dfrac{1}{a_n},n\in N^*,$两边平方得 $a_{n+1}^2=a_n^2+2+\dfrac{1}{a_n^2},$于是$a_{n+1}^2-a_{n}^2\ge2,$从而$a_{n+1}^2\ge2n+1,$即$a_{n+1}\ge\sqrt{2n+1}.$
又由于$a_{n+1}^2-a_n^2=2+\dfrac{1}{a_n^2},$ 于是
\[\begin{split} a_{n+1}^2-a_1^2&=2n+\dfrac{1}{a_1^2}+\dfrac{1}{a_2^2}+\cdots +\dfrac{1}{a_n^2}\\ &\le2n+1+\dfrac 13+\cdots +\dfrac{1}{2n-1}\\ & \leqslant 2n+1+\dfrac 12+\cdots +\dfrac 1n \\ &\le 2n+\ln n+1,\end{split} \]因此$$a_{n+1}\le\sqrt{2n+\ln n+2}.$$
综上$$\sqrt{2n+1}\le a_{n+1}\le\sqrt{2n+\ln n+2},$$进而可得
$\sqrt{4033}\le a_{2017}\le \sqrt{4034+ln(2016)}$
注意到$ln(2016)<ln(2^{11})<ln(e^{11})=11,63^2=3969,64^2=4096$则$[a_{2017}]=63$
$\textbf{注:从上面的推导我们可以到这个数列通项的大致的估计}$
$\lim\limits_{n\to+\infty}\dfrac{a_n}{\sqrt n}=\sqrt 2.$
MT【121】耐克数列的估计的更多相关文章
- 【耐克】【空军一号 Nike Air Force 1】【软木塞】
[高帮 全白 36-45] [空军一号 低帮 36-46] [空军一号 36-45] [Nike Air Force 1 Flyknit 空军中帮飞线系列 全黑 36-44] [耐克空军一号 软木塞 ...
- MT【162】渐近估计
(2017北大优特测试第八题) 数列 \(\{a_n\}\) 满足 \(a_1=1\),\(a_{n+1}=a_n+\dfrac{1}{a_n}\),若 \(a_{2017}\in (k,k+1)\) ...
- 【耐克】【Air Max90 气垫跑鞋】
[max90 36-44] [加毛冬款 36-44] [黑白百搭款 36-44] [air max90 高帮 冬款 耐看百搭 36-44] [air max90 高帮 40-44] [Air Max9 ...
- MT【71】数列裂项放缩题
已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...
- 耐克的定制页用canvas如何实现....跪求前端大神指点。
选择鞋子的鞋底 鞋底会变色,也可以添加自己定制的id,这个东西看的是用canvas做的,但是小弟确实不知道怎么去做,求大神指点一二,不胜感激! nike的定制页地址:http://store.nike ...
- 短视频APP+不同类型社交应用发展分析+化妆品电商
短视频APP——昙花一现还是发展趋势? 在这个互联网与科技并行且飞速发展的时代,各种app不断涌入市场,其中短视频app便是一个典型,美拍,就成功入围2014年十大最火app.而短视频app也势必要成 ...
- python基础知识小结-运维笔记
接触python已有一段时间了,下面针对python基础知识的使用做一完整梳理:1)避免‘\n’等特殊字符的两种方式: a)利用转义字符‘\’ b)利用原始字符‘r’ print r'c:\now' ...
- css flex 兼容ios android--商品展示 添加购物车
https://blog.csdn.net/u010035608/article/details/52711248 <!DOCTYPE html> <html> <hea ...
- C#线程篇---Windows调度线程准则(3)
Windows本身就是一个抢占式操作系统,它的实现,必定有某种算法在里面,比如什么时候调度哪些线程,需要花费多长时间等问题. 我们时时在用Windows,作为程序员,我们有必要知道其中最贴近我们的算法 ...
随机推荐
- 使用Amplify Shader Editor优化特效Shader
ASE相对于Shader Forge生成的代码更加干净, 用于制作特效的再合适不过,以下是使用ASE优化一个SF制作特效的经过: ## 分析美术用SF制作的Shader 懒得装SF, 直接分析代码可知 ...
- 关于springcloud的一些问题总结.txt
@Bean public CorsFilter corsFilter() { final UrlBasedCorsConfigurationSource source = new UrlBasedCo ...
- springboot 前后端分离开发 从零到整(四、更改密码操作)
前端发送更改密码请求,头部携带token,服务端拦截器拦截头部token并解析,根据token中的信息来查询用户信息.需要登录才能进行的操作是由自己定的,有些操作可以直接放行.具体实现是: 上一章写到 ...
- 【Python学习笔记】正则表达式
Ref:https://deerchao.net/tutorials/regex/regex.htm#greedyandlazy 1. 常用元字符 2.字符转义 查找元字符本身时,需要使用\来取消这些 ...
- LeetCode 193. Valid Phone Numbers
分析 难度 易 来源 https://leetcode.com/problems/valid-phone-numbers/ 题目 Given a text file file.txt that con ...
- 开源ETL工具kettle系列之常见问题
开源ETL工具kettle系列之常见问题 摘要:本文主要介绍使用kettle设计一些ETL任务时一些常见问题,这些问题大部分都不在官方FAQ上,你可以在kettle的论坛上找到一些问题的答案 1. J ...
- ClassLoader.loadClass()与Class.forName()的区别
ClassLoader.loadClass()与Class.forName()都是反射用来构造类的方法,但是他们的用法还是有一定区别的. 在讲区别之前,我觉得很有不要把类的加载过程在此整理一下. 在J ...
- day12生成器
迭代器 __iter__() 获取迭代器 __next__() 下一个 生成器 本质就是迭代器 两种方式写生成器 1. 生成器函数 2. 生成器表达式 生成器函数 函数内部有yield. yield返 ...
- java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper
RabbitMq配置时常见错误 java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper <de ...
- OGG 跳过事务(转)
http://blog.chinaunix.net/uid-26190993-id-3434074.html 在OGG运行过程中,通常会因为各种各样的原因导致容灾端的REPLICAT进程ABEN ...