已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____


解:容易用累乘法得到$a_{n+1}=a_n+\dfrac{1}{a_n},n\in N^*,$两边平方得 $a_{n+1}^2=a_n^2+2+\dfrac{1}{a_n^2},$于是$a_{n+1}^2-a_{n}^2\ge2,$从而$a_{n+1}^2\ge2n+1,$即$a_{n+1}\ge\sqrt{2n+1}.$

又由于$a_{n+1}^2-a_n^2=2+\dfrac{1}{a_n^2},$ 于是
\[\begin{split} a_{n+1}^2-a_1^2&=2n+\dfrac{1}{a_1^2}+\dfrac{1}{a_2^2}+\cdots +\dfrac{1}{a_n^2}\\ &\le2n+1+\dfrac 13+\cdots +\dfrac{1}{2n-1}\\ & \leqslant 2n+1+\dfrac 12+\cdots +\dfrac 1n \\ &\le 2n+\ln n+1,\end{split} \]因此$$a_{n+1}\le\sqrt{2n+\ln n+2}.$$
综上$$\sqrt{2n+1}\le a_{n+1}\le\sqrt{2n+\ln n+2},$$进而可得
$\sqrt{4033}\le a_{2017}\le \sqrt{4034+ln(2016)}$

注意到$ln(2016)<ln(2^{11})<ln(e^{11})=11,63^2=3969,64^2=4096$则$[a_{2017}]=63$

$\textbf{注:从上面的推导我们可以到这个数列通项的大致的估计}$

$\lim\limits_{n\to+\infty}\dfrac{a_n}{\sqrt n}=\sqrt 2.$

MT【121】耐克数列的估计的更多相关文章

  1. 【耐克】【空军一号 Nike Air Force 1】【软木塞】

     [高帮 全白 36-45] [空军一号 低帮 36-46] [空军一号 36-45] [Nike Air Force 1 Flyknit 空军中帮飞线系列 全黑 36-44] [耐克空军一号 软木塞 ...

  2. MT【162】渐近估计

    (2017北大优特测试第八题) 数列 \(\{a_n\}\) 满足 \(a_1=1\),\(a_{n+1}=a_n+\dfrac{1}{a_n}\),若 \(a_{2017}\in (k,k+1)\) ...

  3. 【耐克】【Air Max90 气垫跑鞋】

    [max90 36-44] [加毛冬款 36-44] [黑白百搭款 36-44] [air max90 高帮 冬款 耐看百搭 36-44] [air max90 高帮 40-44] [Air Max9 ...

  4. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  5. 耐克的定制页用canvas如何实现....跪求前端大神指点。

    选择鞋子的鞋底 鞋底会变色,也可以添加自己定制的id,这个东西看的是用canvas做的,但是小弟确实不知道怎么去做,求大神指点一二,不胜感激! nike的定制页地址:http://store.nike ...

  6. 短视频APP+不同类型社交应用发展分析+化妆品电商

    短视频APP——昙花一现还是发展趋势? 在这个互联网与科技并行且飞速发展的时代,各种app不断涌入市场,其中短视频app便是一个典型,美拍,就成功入围2014年十大最火app.而短视频app也势必要成 ...

  7. python基础知识小结-运维笔记

    接触python已有一段时间了,下面针对python基础知识的使用做一完整梳理:1)避免‘\n’等特殊字符的两种方式: a)利用转义字符‘\’ b)利用原始字符‘r’ print r'c:\now' ...

  8. css flex 兼容ios android--商品展示 添加购物车

    https://blog.csdn.net/u010035608/article/details/52711248 <!DOCTYPE html> <html> <hea ...

  9. C#线程篇---Windows调度线程准则(3)

    Windows本身就是一个抢占式操作系统,它的实现,必定有某种算法在里面,比如什么时候调度哪些线程,需要花费多长时间等问题. 我们时时在用Windows,作为程序员,我们有必要知道其中最贴近我们的算法 ...

随机推荐

  1. Qt-网易云音乐界面实现-6 迷你个人中心实现

    这个界面除了麻烦耗时,没有啥技术含量.暂时我也就把它称为迷你个人中心,因为后面还有一个个人中心了. 先看下完成品 左侧是我的,右侧是原生 个人感觉还可以吧,哈哈哈.给我自己奖励一个鸡腿. 看下头文件 ...

  2. lua中table的常用方法

    转载:https://blog.csdn.net/Fenglele_Fans/article/details/83627021 1:table.sort() language = {"lua ...

  3. Scikit-learn数据变换

    转载自:https://blog.csdn.net/Dream_angel_Z/article/details/49406573 本文主要是对照scikit-learn的preprocessing章节 ...

  4. swap分区和内存

    1  查看swap 空间大小(总计):      # free -m          默认单位为k, -m 单位为M                total       used       fr ...

  5. OLAP和OLTP的区别

    OLAP(On-Line Analytical Processing)联机分析处理,也称为面向交易的处理过程,其基本特征是前台接收的用户数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果 ...

  6. 从零开始的Python学习Episode 22——多线程

    多线程 线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. ...

  7. 微信JS-SDK实现上传图片功能

    最近在项目开发中,有一个在微信WEB项目中上传图片的需求,一开始使用了传统的<input type="file">的方式去实现,但是后面发现在使用这种传统模式时会由于手 ...

  8. Grunt 5分钟上手:合并+压缩前端代码

    Grunt 的各种优点这里就不扯了,对于 新手来说 合并(concat) + 压缩(uglify) 前端代码的需求量应该是最大的,这里以这俩种功能为主做一个5分钟的入门吧! 工作环境 $ node - ...

  9. LeetCode 657. Robot Return to Origin (C++)

    题目: There is a robot starting at position (0, 0), the origin, on a 2D plane. Given a sequence of its ...

  10. Alpha阶段展示报告

    一.团队成员简介与个人博客地址 江昊,项目经理 http://www.cnblogs.com/haoj/ 王开,后端开发 http://www.cnblogs.com/wk1216123/ 王春阳,后 ...