Permutations
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3041   Accepted: 1641

Description

We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows:


This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc.

What is the value of the expression P(P(1))? It’s clear, that
P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if
P(n) is a permutation then P(P(n)) is a permutation as well. In our
example (believe us)



It is natural to denote this permutation by P2(n) = P(P(n)). In a
general form the defenition is as follows: P(n) = P1(n), Pk(n) =
P(Pk-1(n)). Among the permutations there is a very important one — that
moves nothing:



It is clear that for every k the following relation is satisfied:
(EN)k = EN. The following less trivial statement is correct (we won't
prove it here, you may prove it yourself incidentally): Let P(n) be some
permutation of an N elements set. Then there exists a natural number k,
that Pk = EN. The least natural k such that Pk = EN is called an order
of the permutation P.

The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."

Input

In
the first line of the standard input an only natural number N (1 <= N
<= 1000) is contained, that is a number of elements in the set that
is rearranged by this permutation. In the second line there are N
natural numbers of the range from 1 up to N, separated by a space, that
define a permutation — the numbers P(1), P(2),…, P(N).

Output

You
should write an only natural number to the standard output, that is an
order of the permutation. You may consider that an answer shouldn't
exceed 109.

Sample Input

5
4 1 5 2 3

Sample Output

6

题意:给出一个集合 p,每次按照一个规则去换掉其中的元素,问使 p^k = p 成立的最小的 k 是多少?

题解:我们将该集合的所有置换群求出来,那么最小的k就是这些群的循环的最小公倍数,比如:
1 2 3 4 5
4 1 5 2 3
上面可以划分出两个群 (1,4,2),(3,5)这两个群的循环分别是 3 ,2 所以最小的 k 就是 3*2 = 6
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long LL;
const int N = ;
int n;
struct Node{
int val,id;
}node[N];
bool vis[N];
int cmp(Node a,Node b){
return a.val < b.val;
}
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int main()
{
while(scanf("%d",&n)!=EOF){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
scanf("%d",&node[i].val);
node[i].id = i;
}
sort(node+,node++n,cmp);
int lcm = ;
for(int i=;i<=n;i++){
int loop = ;
int t = i;
while(!vis[t]){
loop++;
vis[t] = true;
t = node[t].id;
}
if(loop){
lcm = lcm/gcd(lcm,loop)*loop;
}
}
printf("%d\n",lcm);
}
return ;
}

poj 2369(置换群)的更多相关文章

  1. POJ 2369 Permutations(置换群概念题)

    Description We remind that the permutation of some final set is a one-to-one mapping of the set onto ...

  2. poj 2369 Permutations - 数论

    We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Les ...

  3. poj 1026(置换群)

    题意:给你一个变换规则,和一个字符串,问经过k次变换后得到的字符串. 思路:开始的时候试图去找它的整个周期,谁知道周期太大了,各种RE,后来在得知此题需要用置换群来优化,第一次接触置换群学习了下! 代 ...

  4. poj 3270(置换群+贪心)

    Cow Sorting Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6993   Accepted: 2754 Descr ...

  5. POJ 3270 置换群问题

    题目大意是: 每头牛都有一个对应的值a[i],现在给定一个初始的牛的序列,希望通过两两交换,能够使这些牛按值升序排列,每次交换都会耗费一个 a[i]+a[j] 希望耗费最小,求出这个最小耗费 个人觉得 ...

  6. POJ 1026 置换群的k次幂问题

    题目大意: 给定了一组对应关系,经过k次幂后,得到新的对应关系b[i],然后将给定的字符串上的第i位字符放置到b[i]的位置上, 如果字符串长度不足n就用空格补足,这里的是空格,也就是str[i] = ...

  7. POJ 2369

    我们知道,当循环长度为L时,置换群幂次为K ,则结果是GCD(L,K)个积相乘. 于是,我们只需要求出每个循环的长度,求得它们的最小公倍数即为解. #include <iostream> ...

  8. POJ 2369 Permutations

    傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

  9. poj 3270(置换群)

    题意:给定n头母牛的脾气大小,然后让你通过交换任意两头母牛的位置使得最后的母牛序列的脾气值从小到大,交换两头母牛的代价是两个脾气之和,使得代价最小. 分析:以前做过一道题,只有一个地方和这道题不同,但 ...

随机推荐

  1. navicat执行大容量的.sql文件时的设置

    如果有主外键关联等,执行报错,则去掉中间的对勾保留第三个对勾试试.第三个对勾 是 手动提交(不自动提交,估计是全部导入到数据库中之后再一起提交,而不是导入一条sql语句就提交一次) 如果同时不勾选第2 ...

  2. 转载OPENCV学习随笔

    转载自 亦轩Dhc http://www.cnblogs.com/daihengchen/p/5492729.html 学习笔记:使用opencv做双目测距(相机标定+立体匹配+测距).   最近在做 ...

  3. golang json 编码解码

    json 编码 package main import ( "encoding/json" "fmt" ) type Person struct { Name ...

  4. Centos7.2安装tomcat+Myeclipse(遇到的一些问题与总结)+web项目实战

    工作环境:centos7.2 PS:没有耐心的同学可以直接跳到后面的安装方法,对于安装方法大多是网上的,我只是做相关收集和总结 给个tomca和Myeclipset折腾的半死,现在做一些总结1.一定要 ...

  5. python print end=' ' 不换行

    python3.x 实现print 不换行 python中print之后是默认换行的,是因为其默认属性 end 默认值为"\n"(\n为换行符). 做练习99乘法表时不想换行,改变 ...

  6. Visual Studio 2013打开项目出现“未安装项目的目标框架”提示

    问题描述: windows 10 系统里用Visual Studio 2013打开项目,提示如下: 说项目的.NET Framework version=v4.5,系统里没装,让将项目的框架从v4.5 ...

  7. 【Asp.net入门07】第一个ASP.NET 应用程序-创建数据模型和存储库

    1.理解概念 先理解一下两个概念. 模型 模型是指数据的结构类型,以及可调用的方法.对面向对象编程方法来说,其实就是类.模型类就是一个描述数据的类.只有把数据按一定方式描述出来,我们才能在程序中方便地 ...

  8. Hadoop基础-HDFS的读取与写入过程

    Hadoop基础-HDFS的读取与写入过程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 为了了解客户端及与之交互的HDFS,NameNode和DataNode之间的数据流是什么样 ...

  9. day12 继承

    设计原则:开闭原则:对于拓展open,对于修改close. 类与类的关系:1.is a(继承关系) 2.has a(组合关系) 继承的优点:1.代码的可重用性 2.父类的属性和方法用于子类 3.子类可 ...

  10. python2(中文编码问题):UnicodeDecodeError: 'ascii' codec can't decode byte 0x?? in position 1

    python在安装时,默认的编码是ascii,当程序中出现非ascii编码时,python的处理常常会报这样的错UnicodeDecodeError: 'ascii' codec can't deco ...