传送门

dp好题。

每一天要变更路线一定还是走最短路。

所以l~r天不变更路线的最优方案就是把l~r天所有不能走的点都删掉再求最短路。显然是可以dp的。

设f[i]表示第i天的最优花销。那么我们枚举在哪里切换路线更优,则有状态转移方程:

f[i]=min(f[j]+spfa(j,i)∗(i−j)+k)(j=1...i−1)" role="presentation" style="position: relative;">f[i]=min(f[j]+spfa(j,i)∗(i−j)+k)(j=1...i−1)f[i]=min(f[j]+spfa(j,i)∗(i−j)+k)(j=1...i−1)

其中spfa时只有合法的点参与。

另外可以bitset优化一波。

代码:

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
int day,n,K,E,f[105],cnt=0,first[30],d[30];
struct edge{int v,w,next;}e[20000];
bool in[30];
bitset<21>del[105];
inline void add(int u,int v,int w){e[++cnt].v=v,e[cnt].next=first[u],e[cnt].w=w,first[u]=cnt;}
inline int spfa(int l,int r){
    queue<int>q;
    bitset<21>dell;
    for(int i=l;i<=r;++i)dell|=del[i];
    for(int i=1;i<=n;++i)in[i]=false,d[i]=inf;
    q.push(1),d[1]=0,in[1]=true;
    while(!q.empty()){
        int x=q.front();
        q.pop(),in[x]=false;
        for(int i=first[x];i;i=e[i].next){
            int v=e[i].v;
            if(dell[v])continue;
            if(d[v]>d[x]+e[i].w){
                d[v]=d[x]+e[i].w;
                if(!in[v])in[v]=true,q.push(v);
            }
        }
    }
    return d[n];
}
int main(){
    day=read(),n=read(),K=read(),E=read();
    for(int i=1;i<=E;++i){
        int a=read(),b=read(),c=read();
        add(a,b,c),add(b,a,c);
    }
    int d=read();
    while(d--){
        int tmp=read(),a=read(),b=read();
        for(int i=a;i<=b;++i)del[i][tmp]=1;
    }
    f[1]=spfa(1,1);
    for(int i=2;i<=day;++i){
        int tmp=spfa(1,i);
        if(tmp!=inf)f[i]=tmp*i;
        else f[i]=inf;
        for(int j=1;j<i;++j){
            tmp=spfa(j+1,i);
            if(tmp!=inf)f[i]=min(f[i],f[j]+K+(i-j)*tmp);
        }
    }
    cout<<f[day];
    return 0;
}

2018.09.02 bzoj1003: [ZJOI2006]物流运输(dp+最短路转移)的更多相关文章

  1. [BZOJ1003] [ZJOI2006] 物流运输trans (最短路 & dp)

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  2. P1772 [ZJOI2006]物流运输[DP+最短路]

    题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...

  3. BZOJ.1003.[ZJOI2006]物流运输(DP 最短路Dijkstra)

    题目链接 容易看出是个最短路+DP.既然答案和天数有关,那么就令\(f[i]\)表示前\(i\)天最小成本. 这个转移很好想: \(f[i]=\min(f[i],\ f[j]+cost(j+1,i)+ ...

  4. [ZJOI2006]物流运输 DP 最短路

    ---题面--- 题解: 设f[i]表示到第i天的代价,cost[i][j]表示第i天到第j天采取同一种方案的最小代价.那么转移就很明显了,直接$n^2$枚举即可. 所以问题就变成了怎么获取cost数 ...

  5. BZOJ_1003_[ZJOI2006]物流运输_最短路+dp

    BZOJ_1003_[ZJOI2006]物流运输_最短路+dp 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1003 分析: 这种一段一段的显 ...

  6. bzoj1003: [ZJOI2006]物流运输(DP+spfa)

    1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...

  7. bzoj1003 [ZJOI2006]物流运输

    1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 6300  Solved: 2597[Submit][Stat ...

  8. bzoj1003[ZJOI2006]物流运输trans

    1003: [ZJOI2006]物流运输trans Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常 ...

  9. BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)

    1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...

随机推荐

  1. 编写jQuery插件(一)——插件约定及插件中的闭包

    编写插件的目的是给已经有的一系列方法或函数做一个封装,以便在其他地方重复使用,提高开发效率和方便后期维护. 在编写jQuery插件的时候,我们一般会遵循一些约定: jQuery插件推荐命名为:jque ...

  2. OPTION SQL_SELECT_LIMIT=DEFAULT'

    You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version ...

  3. JS 实现Json查询的方法实例

    其实很简单,我这部分代码,前一部分是简单的实现如何使用JS写模板,第二个就是具体的实现了JSON查询的一个扩展. 以后查询Json就有了利器了. 代码如下: /*         * 定义模板函数   ...

  4. one by one 项目 part 2

    在网上百度了一下mySQL常用语句 ,整理如下: 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3. ...

  5. ArcGIS案例学习笔记1_1

    ArcGIS案例学习笔记1_1 联系方式:谢老师,135_4855_4328, xiexiaokui#qq.com 时间:第一天上午 准备 0.U盘复制ArcGIS培训*** 1.练习数据不要放到桌面 ...

  6. express + mongodb 搭建一个简易网站 (五)

    前面已经将导航中的“所有宝贝”页面连上了mongodb,现在我们就把其他的页面脸上数据库,将整个网站全部实现. 打开routes文件,找到jacket.js,将里面的代码修改如下: var expre ...

  7. Cookie进行会话管理

    一.会话的概念 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 有状态会话:一个同学来过教室,下次再来教室,我们会知道这个同学曾 ...

  8. JDK中rt.jar、tools.jar和dt.jar作用

    dt.jar和tools.jar位于:{Java_Home}/lib/下,而rt.jar位于:{Java_Home}/jre/lib/下,其中: rt.jar是JAVA基础类库,也就是你在java d ...

  9. java.lang.Error: Unresolved compilation problem: 解决方案

    严重: Allocate exception for servlet WX_Interfacejava.lang.Error: Unresolved compilation problem: The ...

  10. ubuntu下 openvpn客户端的配置

    1.安装openvpn sudo apt-get install openvpn 2.配置openvpn 作为客户端,OpenVPN并没有特定的配置文件,而是由服务器提供方给出一个配置文件.对于认证, ...