2597: [Wc2007]剪刀石头布

链接

分析:  

  费用流。

  首先转化一下问题,整张图最优的情况是存在$C_n^3$个,即任意3个都行,然后考虑去掉最少不满足的三元环。

  如果u赢了v,u向v连一条边,如果v有k条入边,那么说明少了$C_k^2$个三元环,所对每场比赛分配度数,求最小费用最大流。

  具体地:S向每场比赛连容量为1,花费为0的边;每场比赛向两个人连容量为1,花费为0的边;每个人因为度数不同,花费不同,所以差分后建边。

  还有一种随机化+迭代的做法。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , INF = 1e9;
struct Edge { int from, to, nxt, cap, cost; } e[];
int head[N], pre[N], dis[N], q[], deg[N], id[][], A[][], P[N], tag[N], En = , S, T;
bool vis[N]; inline void add_edge(int u,int v,int f,int w) {
++En; e[En].from = u, e[En].to = v, e[En].cap = f, e[En].cost = w, e[En].nxt = head[u]; head[u] = En;
++En; e[En].from = v, e[En].to = u, e[En].cap = , e[En].cost = -w, e[En].nxt = head[v]; head[v] = En;
}
bool spfa() {
for (int i = ; i <= T; ++i) dis[i] = INF, vis[i] = false, pre[i] = ;
int L = , R = ;
q[++R] = S, vis[S] = true, dis[S] = ;
while (L <= R) {
int u = q[L ++]; vis[u] = false;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (dis[v] > dis[u] + e[i].cost && e[i].cap > ) {
dis[v] = dis[u] + e[i].cost;
pre[v] = i;
if (!vis[v]) q[++R] = v, vis[v] = true;
}
}
}
return dis[T] != INF;
}
int mcf() {
int Cost = , Flow = ;
while (spfa()) {
int now = 1e9;
for (int i = T; i != S; i = e[pre[i]].from)
now = min(now, e[pre[i]].cap);
for (int i = T; i != S; i = e[pre[i]].from)
e[pre[i]].cap -= now, e[pre[i] ^ ].cap += now;
Cost += dis[T] * now;
Flow += now;
}
return Cost;
}
int main() {
freopen("a.in", "r", stdin);
int n = read(), tot = n;
if (n < ) { printf(""); return ; }
for (int i = ; i <= n; ++i) {
for (int j = ; j <= i; ++j) read();
for (int j = i + ; j <= n; ++j) {
int x = read();
id[i][j] = ++tot;
if (x == ) deg[j] ++, tag[tot] = ;
else if (x == ) deg[i] ++, tag[tot] = ;
else { add_edge(tot, i, , ); P[tot] = En; add_edge(tot, j, , ); }
}
}
S = , T = tot + ;
for (int i = n + ; i <= tot; ++i) add_edge(S, i, , );
for (int i = ; i <= n; ++i)
for (int j = deg[i]; j < n - ; ++j) add_edge(i, T, , j);
int ans = n * (n - ) * (n - ) / ;
for (int i = ; i <= n; ++i)
ans -= deg[i] * (deg[i] - ) / ;
ans -= mcf();
printf("%d\n", ans);
for (int i = ; i <= n; ++i)
for (int j = i + ; j <= n; ++j) {
if (tag[id[i][j]]) A[i][j] = tag[id[i][j]] - ;
else A[i][j] = e[P[id[i][j]]].cap ? : ;
}
for (int i = ; i <= n; ++i, puts("")) {
for (int j = ; j < i; ++j) printf("%d ", A[j][i] ^ );
for (int j = i; j <= n; ++j) printf("%d ", A[i][j]);
}
return ;
}

2597: [Wc2007]剪刀石头布的更多相关文章

  1. bzoj 2597 [Wc2007]剪刀石头布——费用流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 三个人之间的关系,除了“剪刀石头布”,就是有一个人赢了2局:所以考虑算补集,则每个人对 ...

  2. BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)

    BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...

  3. bzoj 2597: [Wc2007]剪刀石头布【最小费用最大流】

    脑子不太清楚一个zz问题调了好久-- 首先正难则反,因为三元环好像没什么特点,就考虑让非三元环个数最小 考虑非三元环特点,就是环上一定有一个点的入度为2,联系整张图,三元环个数就是每个点C(入度,2) ...

  4. BZOJ 2597: [Wc2007]剪刀石头布(费用流)

    传送门 解题思路 考虑全集-不能构成三元环的个数.如果三个点不能构成三元环,一定有一个点的入度为\(2\),继续扩展,如果一个点的度数为\(3\),则会失去3个三元环.对于一个点来说,它所产生的不能构 ...

  5. [Wc2007]剪刀石头布[补集转化+拆边]

    2597: [Wc2007]剪刀石头布 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1157  Solved:  ...

  6. [Wc2007]剪刀石头布

    [Wc2007]剪刀石头布 http://www.lydsy.com/JudgeOnline/problem.php?id=2597 Time Limit: 20 Sec  Memory Limit: ...

  7. [bzoj2597][Wc2007]剪刀石头布_费用流

    [Wc2007]剪刀石头布 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 题解: 发现直接求三元环不好求,我们考虑任选三个点不是 ...

  8. 【BZOJ2597】[Wc2007]剪刀石头布 最小费用流

    [BZOJ2597][Wc2007]剪刀石头布 Description 在一些一对一游戏的比赛(如下棋.乒乓球和羽毛球的单打)中,我们经常会遇到A胜过B,B胜过C而C又胜过A的有趣情况,不妨形象的称之 ...

  9. 【bzoj 2597】[Wc2007]剪刀石头布(图论--网络流 最小费用最大流)

    题目:在一些一对一游戏的比赛(如下棋.乒乓球和羽毛球的单打)中,我们经常会遇到A胜过B,B胜过C而C又胜过A的有趣情况,不妨形象的称之为剪刀石头布情况.有的时候,无聊的人们会津津乐道于统计有多少这样的 ...

随机推荐

  1. datediff

    DateDiff()是计算机函数. 中文名 日期比较函数 外文名 DateDiff() 作    用 得 出两个日期之间的间隔 用    途 返回两个日期之间的差值 允许数据类型 timeinterv ...

  2. Fuckey V1.0 Beta版发布!!!

    Fuckey,以前叫FullNexus4,只因为当时想做一个软件给自己的Nexus 4,方便方便一下,不过这名字感觉太局限了,毕竟很多朋友不是使用的Nexus 4的手机,但却还是使用了FullNexu ...

  3. 使用Charles进行网络请求抓包解析

    使用Charles进行网络请求抓包解析 0. 懒人的福音(⌐■_■)(破解版下载地址,记得安装java库支持) http://pan.baidu.com/s/1c08ksMW 1. 查看电脑的ip地址 ...

  4. 使用FBTweak

    使用FBTweak https://github.com/facebook/Tweaks FBTweak是Facebook的一款开源库,用于微调数据而无需我们重复编译跑真机用的,它支持4种类型的cel ...

  5. zendstudio 默认网页打开your project的时候不显示本地主机localhost的解决方法

    修改wamp配置文件c:\\wamp64\wampmanager.conf 修改为如下选项即可 默认这个选项是off关闭的,打开即可. urlAddLocalhost = "on" ...

  6. 在C中调用Matlab (转)

    http://blog.163.com/rongting_chen/blog/static/164906844201252354518462/ http://www.ilovematlab.cn/th ...

  7. openoffice centos7.4 安装

    其他是配置好java环境后操作 1.下载软件 http://www.openoffice.org/download/other.html 2.安装 tar xf Apache_OpenOffice_4 ...

  8. ssh连接CentOS7服务器

    ssh原理: ssh是一种专为远程登陆会话和其他网络服务提供安全性的协议,主要用于远程登陆. ssh采用公钥加密,在远程连接时,远程主机接收到用户的登录请求,将自己的公钥发送给用户,用户使用这个公钥将 ...

  9. 【http学习杂记】2017年7月14日

    1. 连接超时 连接超时是tcp协议层次, 此时服务器还没有处理请求数据,也就是说服务器的逻辑开没有执行 2. 请求超时 请求超时属于服务器已经连接成功并开始处理,但是时间比较长,大于你设置的请求超时 ...

  10. 【原创】rabbitmq 学习

    rabbitmq 命令 1. 用户管理类命令: 该类别比较意图比较明显,详细查看官方文档.现做俩点说明: authenticate_user 此命令用于验证一个用户名和密码对不对,并没有什么用: se ...