Pytorch的安装请参考torch的官方文档,传送门:https://pytorch.org/get-started/locally/

  1. Numpy的复习
    1. 如果你之前没有学过Numpy的话,建议去看看cs231n的Python-numpy-tutorial:http://cs231n.github.io/python-numpy-tutorial/
  2. 先给出完整的代码,接下来是代码的解读  
    1.  

      #导入numpy库和matplotlib里面的pyplot模块
      # tips:python语法 as :import XXX as YYY 就是给XXX 起个别名叫 YYY
      import numpy as np import matplotlib.pyplot as plt
      # []为一个list,生成浮点数
      x_data = [1.0, 2.0, 3.0]
      y_data = [2.0, 4.0, 6.0] #前向传播的模型为 y = w * x
      # our model for the forward pass
      def forward(x):
      return x * w #损失函数采用平方误差 (y_pred-y)2
      # Loss function
      def loss(x, y):
      y_pred = forward(x)
      return (y_pred - y) * (y_pred - y) #新建两个空的列表来记录 w、mse 的值 mse为均方误差 mean square error的缩写
      w_list = []
      mse_list = []
      # tips:python小知识点:np.arrange(起始,终止,步长) 生成一个区间的数值,步长就是起始值每次往终点值移动的长度
      for w in np.arange(0.0, 4.1, 0.1):
      # 在控制台,输出w的值
      print("w=", w)
      # 定义一个接收损失的变量,并初始化为0
      l_sum = 0
      # tips: python zip函数 返回的值是:输入的两个数组对应位置组合的一个元组()
      # a= 【1,2,3】 zip(a,b)其实就是返回 (1,4),(2,5),(3,6)
      # b= 【4,5,6】
      for x_val, y_val in zip(x_data, y_data):
      #得到一个预测的值
      y_pred_val = forward(x_val)
      # 计算输入值得到的预测值和真实值之间的误差
      l = loss(x_val, y_val)
      # 误差进行求和
      l_sum += l
      print("\t", x_val, y_val, y_pred_val, l)
      print("MSE=", l_sum / 3)
      # 【】.append 向列表中追加值
      w_list.append(w)
      mse_list.append(l_sum / 3)
      # 调用画图函数
      plt.plot(w_list, mse_list)
      # 添加 x,y的标签
      plt.ylabel('Loss')
      plt.xlabel('w')
      # 将结果展示出来
      plt.show()

       

PytorchZerotoAll学习笔记(一)的更多相关文章

  1. PytorchZerotoAll学习笔记(三)--自动求导

    Pytorch给我们提供了自动求导的函数,不用再自己再推导计算梯度的公式了 虽然有了自动求导的函数,但是这里我想给大家浅析一下:深度学习中的一个很重要的反向传播 references:https:// ...

  2. PytorchZerotoAll学习笔记(五)--逻辑回归

    逻辑回归: 本章内容主要讲述简单的逻辑回归:这个可以归纳为二分类的问题. 逻辑,非假即真.两种可能,我们可以联想一下在继电器控制的电信号(0 or 1) 举个栗子:比如说你花了好几个星期复习的考试(通 ...

  3. PytorchZerotoAll学习笔记(四)--线性回归

    线性回归 # 导入 torch.torch.autograd的Variable模块import torch from torch.autograd import Variable # 生成需要回归需要 ...

  4. PytorchZerotoAll学习笔记(二)--梯度下降之手动求导

    梯度下降算法:    待优化的损失值为 loss,那么我们希望预测的值能够很接近真实的值 y_pred ≍ y_label      我们的样本有n个,那么损失值可以由一下公式计算得出: 要使得los ...

  5. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  6. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  7. PHP-会员登录与注册例子解析-学习笔记

    1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UM ...

  8. 2014年暑假c#学习笔记目录

    2014年暑假c#学习笔记 一.C#编程基础 1. c#编程基础之枚举 2. c#编程基础之函数可变参数 3. c#编程基础之字符串基础 4. c#编程基础之字符串函数 5.c#编程基础之ref.ou ...

  9. JAVA GUI编程学习笔记目录

    2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...

随机推荐

  1. 【原创】大叔经验分享(53)kudu报错unable to find SASL plugin: PLAIN

    kudu安装后运行不正常,master中找不到任何tserver,查看tserver日志发现有很多报错: Failed to heartbeat to master:7051: Invalid arg ...

  2. PAT乙级1030

    1030 完美数列 (25 分)   给定一个正整数数列,和正整数 p,设这个数列中的最大值是 M,最小值是 m,如果 M≤mp,则称这个数列是完美数列. 现在给定参数 p 和一些正整数,请你从中选择 ...

  3. Linux基础-6.系统的启动过程

    Linux启动时我们会看到许多启动信息 Linux系统的启动过程并不是大家想象中的那么复杂,其过程可以分为5个阶段: 内核的引导 运行init 系统初始化 建立终端 用户登录系统 init程序的类型: ...

  4. 文本处理三剑客之 sed

    sed:文本流编辑器 主要是对文件的快速增删改查,查询功能中最常用的是过滤,取行 sed [选项] [sed内置命令字符] [输入文件] Options: -n:取消默认的sed输出,常与sed内置命 ...

  5. 远程连接服务器端Jupyter Notebook

    1. 安装 输入命令: sudo apt-get install sshfs 2. 服务器端开启Jupyter Notebook Ubuntu服务器端安装过程参考:www.cnblogs.com/la ...

  6. jQuery----each()方法

    jquery中有隐式迭代,不需要我们再次对某些元素进行操作.但是如果涉及到不同元素有不同操作,需要进行each遍历.本文利用10个li设置不同的透明度的案例,对each方法进行说明. 语法: $(元素 ...

  7. 多进程共享内存的MemoryStream

    文章转载于http://www.raysoftware.cn/?p=506 具体用处呢,有很多,比如多进程浏览器共享Cookie啦,多个进程传送点数据啦. 共享内存封装. 封装成了MemoryStre ...

  8. 在hue平台上使用oozie工作流调度

    在实习期间,公司使用的hue平台做的数仓,下面就简单介绍一下hue的一些使用的注意事项,主要是工作流的使用和调度 进入hue首页: Workflow是工作流,Schedule是调度工作流的,如设置工作 ...

  9. 20155211课下测试ch10补交

    20155211课下测试ch10补交 1.假设下面代码中的foobar.txt中有6个ASCII字母,程序的输出是() A.c = f B.c = o C.c = b D.c = 随机数 答案:A 解 ...

  10. 2017-2018-2 《网络对抗技术》 20155322 第五周 Exp2 后门原理与实践

    #2017-2018-2 <网络对抗技术> 20155322 第五周 Exp2 后门原理与实践 [博客目录] 1-实践目标 1.1-实践介绍 1.2-实践内容 1.3-实践要求 2-实践过 ...