Pytorch的安装请参考torch的官方文档,传送门:https://pytorch.org/get-started/locally/

  1. Numpy的复习
    1. 如果你之前没有学过Numpy的话,建议去看看cs231n的Python-numpy-tutorial:http://cs231n.github.io/python-numpy-tutorial/
  2. 先给出完整的代码,接下来是代码的解读  
    1.  

      #导入numpy库和matplotlib里面的pyplot模块
      # tips:python语法 as :import XXX as YYY 就是给XXX 起个别名叫 YYY
      import numpy as np import matplotlib.pyplot as plt
      # []为一个list,生成浮点数
      x_data = [1.0, 2.0, 3.0]
      y_data = [2.0, 4.0, 6.0] #前向传播的模型为 y = w * x
      # our model for the forward pass
      def forward(x):
      return x * w #损失函数采用平方误差 (y_pred-y)2
      # Loss function
      def loss(x, y):
      y_pred = forward(x)
      return (y_pred - y) * (y_pred - y) #新建两个空的列表来记录 w、mse 的值 mse为均方误差 mean square error的缩写
      w_list = []
      mse_list = []
      # tips:python小知识点:np.arrange(起始,终止,步长) 生成一个区间的数值,步长就是起始值每次往终点值移动的长度
      for w in np.arange(0.0, 4.1, 0.1):
      # 在控制台,输出w的值
      print("w=", w)
      # 定义一个接收损失的变量,并初始化为0
      l_sum = 0
      # tips: python zip函数 返回的值是:输入的两个数组对应位置组合的一个元组()
      # a= 【1,2,3】 zip(a,b)其实就是返回 (1,4),(2,5),(3,6)
      # b= 【4,5,6】
      for x_val, y_val in zip(x_data, y_data):
      #得到一个预测的值
      y_pred_val = forward(x_val)
      # 计算输入值得到的预测值和真实值之间的误差
      l = loss(x_val, y_val)
      # 误差进行求和
      l_sum += l
      print("\t", x_val, y_val, y_pred_val, l)
      print("MSE=", l_sum / 3)
      # 【】.append 向列表中追加值
      w_list.append(w)
      mse_list.append(l_sum / 3)
      # 调用画图函数
      plt.plot(w_list, mse_list)
      # 添加 x,y的标签
      plt.ylabel('Loss')
      plt.xlabel('w')
      # 将结果展示出来
      plt.show()

       

PytorchZerotoAll学习笔记(一)的更多相关文章

  1. PytorchZerotoAll学习笔记(三)--自动求导

    Pytorch给我们提供了自动求导的函数,不用再自己再推导计算梯度的公式了 虽然有了自动求导的函数,但是这里我想给大家浅析一下:深度学习中的一个很重要的反向传播 references:https:// ...

  2. PytorchZerotoAll学习笔记(五)--逻辑回归

    逻辑回归: 本章内容主要讲述简单的逻辑回归:这个可以归纳为二分类的问题. 逻辑,非假即真.两种可能,我们可以联想一下在继电器控制的电信号(0 or 1) 举个栗子:比如说你花了好几个星期复习的考试(通 ...

  3. PytorchZerotoAll学习笔记(四)--线性回归

    线性回归 # 导入 torch.torch.autograd的Variable模块import torch from torch.autograd import Variable # 生成需要回归需要 ...

  4. PytorchZerotoAll学习笔记(二)--梯度下降之手动求导

    梯度下降算法:    待优化的损失值为 loss,那么我们希望预测的值能够很接近真实的值 y_pred ≍ y_label      我们的样本有n个,那么损失值可以由一下公式计算得出: 要使得los ...

  5. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  6. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  7. PHP-会员登录与注册例子解析-学习笔记

    1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UM ...

  8. 2014年暑假c#学习笔记目录

    2014年暑假c#学习笔记 一.C#编程基础 1. c#编程基础之枚举 2. c#编程基础之函数可变参数 3. c#编程基础之字符串基础 4. c#编程基础之字符串函数 5.c#编程基础之ref.ou ...

  9. JAVA GUI编程学习笔记目录

    2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...

随机推荐

  1. 【openjudge】【字符串】P6374文字排版

    [描述] 给一段英文短文,单词之间以空格分隔(每个单词包括其前后紧邻的标点符号).请将短文重新排版,要求如下: 每行不超过80个字符:每个单词居于同一行上:在同一行的单词之间以一个空格分隔:行首和行尾 ...

  2. docker常用命令(一)

    1. docker命令 docker images //查看本地镜像 docker rmi 镜像名称:标签名称 //删除一个镜像 docker rm 容器ID //删除一个容器 docker comm ...

  3. 初识Qt布局管理器

    Qt布局管理器的类有4种,它们分别为QHBoxLayout.QVBoxLayout.QGridLayout和QStackLayout.其中,QHBoxLayout实现水平布局,QVBoxLayout实 ...

  4. win10下安装Jenkins

    Jenkins是一个基于java的持续集成工具,开源项目.用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能.随着近几年docker技术的成熟和应用,很多公司开始大量尝试 ...

  5. P1446 [HNOI2008]Cards

    题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案. 进一步,小春要求染出Sr张红色,Sb张蓝 ...

  6. 观察者模式及c++实现

     观察者模式概念:定义对象间的一种一对多的依赖关系,以便当一个对象的状态发生改变时,全部依赖于它的对象都得到通知并自己主动更新."Define a one-to-many dependenc ...

  7. 02_Docker在CentOS 6和CentOS 7下的安装

    CentOS 7 环境下安装docker 安装Docker 检查系统内核是否高于Linux3.10版本 uname -r 使用root权限操作,确保yum包是最新版本 sudo yum update ...

  8. Linux中两台主机配置互信关系

    服务名:sshd 客户端配置文件:/etc/ssh/ssh_config 服务端配置文件:/etc/ssh/sshd_config sshd服务需要重启才会生效 service sshd restar ...

  9. webSocket入门

    原理:Pub-Sub(发布和订阅) 它适用于发送者将数据(发布者)发送给抽象数量的收件人(订阅者),而无需指定他们是谁. 1.是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议 ...

  10. C语言学习记录_2019.02.08

    \n:换行:   \t:制表符,相当于大空格: a[5]={2};<------->a[5]={2,0,0,0,0}; 数组初始化的方法:a[5]={0};即全部初始化为0: 数组初始化的 ...