BZOJ 4802 欧拉函数
4802: 欧拉函数
Description
Input
Output
Sample Input
Sample Output
当n较小的时候,若要算出所有的phi(i),那么欧拉筛明显是最优的,线性空间线性时间。
若只需算出固定n对应的前缀和∑phi(i),那很明显,不必算出所有的phi(i)。
对于这种前缀和∑f(i)的计算,若使用杜教“筛”(这并不是素数筛),需要构造一个h=f*g(*指狄利克雷卷积),且前缀和∑g(i)与前缀和∑h(i)可以十分方便地算出。然后经过一系列较为方便的演算,做到大事化小递归求解。如果预先打表O(n^(2/3)),此时复杂度最优为O(n^(2/3))。
我们可以发现,杜教筛对f的要求很苛刻。但是,洲阁筛使用了完全不同的思路。只要f(i)是多项式的,那么我们可以想到类似DP的方法。这样原始是O(n^(3/2))即O(n*sqrt(n))的,但通过各种优化可以压至O(n^(3/4)/log n)的级别。
最后,说一下此题的方法。
- Miller-Rabin质数检验方法:
直观想法我们直接取若干个a,如果都有一个不满足,那么p就是合数。
遗憾的是,存在Carmichael数:你无论取多少个a,有一个不满足,算我输。
比如:561 = 11*51就是一个Carmichael数。

那么,额。。所以我们需要改进算法。
首先有:如果p是素数,x是小于p的正整数,且x^2 mod p = 1,那么要么x=1,要么x=p-1
(这个废话,x=p-1模意义下等于x=-1)
然后我们可以展示下341满足2^340 mod 341 = 1,却不是素数(341=31*11)的原因:
2^340 mod 341 = 1
2^170 mod 341 = 1
2^85 mod 341 = 32
(32这个数很那啥啊怎么不等于340也不等于1啊。。这明显有内幕嘛32*32=1024,1024=341*3+1)
那么就能说明这个数不是素数。
如果是素数,一定是从p-1变到1,或是把所有2的次幂去除完,本来就等于1(这样平方完就一直是1了)
所以要么把所有2的次幂去除完,本来就等于1,要么存在某一个次幂=p-1(这样就正常多了)
这就是Miller-Rabin素数验证的二次探测。
应该来说Miller-Rabin算法也是挺好写的
其中mul(a,b,c)表示a*b%c(因为a*b会爆longlong,所以用快速加)
好了下一个是Pollard-Rho算法:
如果现在拆分的是n:Pollard-Rho(n)
主要流程:Miller-Rabin判断是否质数,是返回,否就试图找出其中一个因子d,然后递归做Pollard-Rho(d)和Pollard-Rho(n/d)。
BZOJ 4802 欧拉函数的更多相关文章
- BZOJ 4802 欧拉函数(Pollard_Rho)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...
- BZOJ 4802: 欧拉函数 (Pollard-Rho)
开始一直T,原来是没有srand- CODE #include<bits/stdc++.h> using namespace std; typedef long long LL; vect ...
- [BZOJ]4805: 欧拉函数求和
解题思路类似莫比乌斯函数之和 题目大意:求[1,n]内的欧拉函数$\varphi$之和.($n<=2*10^{9}$) 思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i) ...
- [bzoj 2818]欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范 ...
- BZOJ 2190 欧拉函数
思路: 递推出来欧拉函数 搞个前缀和 sum[n-1]*2+3就是答案 假设仪仗队是从零开始的 视线能看见的地方就是gcd(x,y)=1的地方 倒过来一样 刨掉(1,1) 就是ans*2+1 再加一下 ...
- BZOJ 4805: 欧拉函数求和 杜教筛
https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...
- 【刷题】BZOJ 4805 欧拉函数求和
Description 给出一个数字N,求sigma(phi(i)),1<=i<=N Input 正整数N.N<=2*10^9 Output 输出答案. Sample Input 1 ...
- bzoj 2818 GCD 数论 欧拉函数
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- day12生成器
迭代器 __iter__() 获取迭代器 __next__() 下一个 生成器 本质就是迭代器 两种方式写生成器 1. 生成器函数 2. 生成器表达式 生成器函数 函数内部有yield. yield返 ...
- AES128加密算法完整实现
概述 原本想把自己AES加密算法的整个实现过程给详细复述下来,分享给想学习的同学,也方便自己复习,但后来发现该工作量太大,加上作业太多没有过多的时间去写.所以就想把自己在学习的过程中多遇到的好的文章进 ...
- Python基础_可迭代的/迭代器/生成器
介绍 可迭代的:内部实现了__iter__方法 迭代器:内部实现了__iter__,__next__方法 生成器:yield,yield from 使用 __iter__() __next__() _ ...
- HDU 1556 Color the ball (一维树状数组,区间更新,单点查询)
中文题,题意就不说了 一开始接触树状数组时,只知道“单点更新,区间求和”的功能,没想到还有“区间更新,单点查询”的作用. 树状数组有两种用途(以一维树状数组举例): 1.单点更新,区间查询(即求和) ...
- wamp 修改www目录
我的情况 Wamp版本:2.2 WAMP2.2安装目录:C:/ www目录:D:/wamp/www/ 变更目录:E:/HbuilderProjects/ 一 主要过程: (1)修改 D:\wamp\b ...
- POJ 1185 炮兵阵地 状压dp
题目链接: http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K 问题描述 司令部的将军们打算在N*M ...
- 【Coursera】因子分析模型
一.协方差矩阵 协方差矩阵为对称矩阵. 在高斯分布中,方差越大,数据分布越分散,方差越小发,数据分布越集中. 在协方差矩阵中,假设矩阵为二维,若第二维的方差大于第一维的方差,则在图像上的体现就是:高斯 ...
- 【搜索】POJ-2718 贪心+枚举
一.题目 Description Given a number of distinct decimal digits, you can form one integer by choosing a n ...
- 【CSAPP笔记】5. 汇编语言——数据
本博客对于汇编的介绍基于32位机器的Intel x86系列处理器和IA32指令集,也涉及少部分x86-64.由于汇编知识相对复杂,这里只做简单介绍和记录,详细请参照书本! 数据格式 下面这张表格中体现 ...
- Beta阶段DAY2
一.提供当天站立式会议照片一张 二.每个人的工作 1.讨论项目每个成员的昨天进展 刘阳航:删除多余按钮,调整界面. 林庭亦:删除麻烦的颜色设置. 郑子熙:添加新增按钮. 陈文俊:重新规划面板及功能. ...