[HZOI 2016]我们爱数数

题目大意:

一张圆桌,每个位置按顺时针从\(1\)到\(n\)编号。有\(n\)个人,编号从\(1\)到\(n\)。如果编号为\(i\)的人坐到了编号为\(i\)的位置或坐到了与编号为\(i\)的位置相邻的位置,这个人就会感到开心,反之这个人会感到沮丧。求有多少种安排坐位的方法,使所有人都入座,并且使得至少\(k\)个人开心。

思路:

用\(f_{i,j,s}\)表示前\(i\)个人,\(j\)个人开心,目前最后两个位置的状态为\(s\)的方案数。

枚举前两个人的位置,就可以化环为链,直接DP就可以求出\(f\)的值。

用\(g_i\)表示\((n-i)!\sum f_{i,j,s}\),\(g_i=\sum {j\choose i}ans_j\)。故\(ans\)可以通过\(g_i\)推出。

参考题解

源代码:

#include<cstdio>
#include<cctype>
#include<cstring>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1001;
const int mod=1e9+7;
int p1[4]={0,0,1,2},p2[4]={0,1,2,3};
int n,m,fac[N],ifac[N],f[N][N][4],g[N];
bool v[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return ((ret%mod)+mod)%mod;
}
inline int C(const int &n,const int &m) {
if(m>n) return 0;
return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main() {
n=p1[1]=getint(),m=getint();
for(register int i=fac[0]=1;i<=n;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
ifac[n]=inv(fac[n]);
for(register int i=n;i>=1;i--) {
ifac[i-1]=(int64)ifac[i]*i%mod;
}
for(register int i=0;i<4;i++) {
const int &a=p1[i];
v[a]=true;
for(register int j=0;j<4;j++) {
const int &b=p2[j];
if(a&&b&&a==b) continue;
v[b]=true;
memset(f,0,sizeof f);
f[2][(!!a)+(!!b)][(v[3]<<1)|v[2]]=1;
for(register int i=2;i<n;i++) {
for(register int j=0;j<=i;j++) {
for(register int k=0;k<4;k++) {
if(!f[i][j][k]) continue;
(f[i+1][j][k>>1]+=f[i][j][k])%=mod;
(f[i+1][j+1][2+(k>>1)]+=f[i][j][k])%=mod;
if(!(k&1)) (f[i+1][j+1][k>>1]+=f[i][j][k])%=mod;
if(!((k>>1)&1)) (f[i+1][j+1][1]+=f[i][j][k])%=mod;
}
}
}
const int t=((v[1]<<1)+v[n]);
for(register int i=1;i<=n;i++) {
for(register int k=0;k<4;k++) {
if(k&t) continue;
(g[i]+=(int64)f[n][i][k]*fac[n-i]%mod)%=mod;
}
}
v[b]=false;
}
v[a]=false;
}
for(register int i=n;i;i--) {
for(register int j=i+1;j<=n;j++) {
g[i]=((g[i]-(int64)g[j]*C(j,i)%mod)%mod+mod)%mod;
}
}
int ans=0;
for(register int i=m;i<=n;i++) (ans+=g[i])%=mod;
printf("%d\n",ans);
return 0;
}

[HZOI 2016]我们爱数数的更多相关文章

  1. 「LOJ6482」LJJ爱数数

    「LOJ6482」LJJ爱数数 解题思路 : 打表发现两个数 \(a, b\) 合法的充要条件是(我不管,我就是打表过的): \[ a + b = \text{gcd}(a, b)^2 \] 设 \( ...

  2. P4844 LJJ爱数数

    题目 P4844 LJJ爱数数 本想找到莫比乌斯反演水题练练,结果直接用了两个多小时才做完 做法 \(\sum\limits_{a=1}^n\sum\limits_{b=1}^n\sum\limits ...

  3. P4844 LJJ爱数数 数论

    思路: 化简后得到(a+b)c=ab,设g=(a,b),A=a/g,B=b/g,则g(A+B)c=ABg^2,即(A+B)c=ABg 由题目已知条件:(a,b,c)=1,即(g,c)=1,g|(A+B ...

  4. LJJ爱数数

    LJJ爱数数 求\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\epsilon(gcd(i,j,k))(\frac{1}{i}+\frac{1}{j}==\frac{1} ...

  5. COGS 2416.[HZOI 2016]公路修建 & COGS 2419.[HZOI 2016]公路修建2 题解

    大意: [HZOI 2016]公路修建 给定一个有n个点和m-1组边的无向连通图,其中每组边都包含一条一级边和一条二级边(连接的顶点相同),同一组边中的一级边权值一定大于等于二级边,另外给出一个数k( ...

  6. [补档][HZOI 2016]简单的Treap

    [HZOI 2016]简单的Treap 题目 Treap是一种平衡二叉搜索树,除二叉搜索树的基本性质外,Treap还满足一个性质: 每个节点都有一个确定的优先级,且每个节点的优先级都比它的两个儿子小( ...

  7. [COGS2426][HZOI 2016]几何

    [COGS2426][HZOI 2016]几何 题目大意: 给定平面坐标系内\(n\)个整点,求这些整点能构成的正多边形的边数的最大值. 思路: 一个基本结论:平面直角坐标系内能够形成的正多边形一定是 ...

  8. cogs——2419. [HZOI 2016]公路修建2

    2419. [HZOI 2016]公路修建2 ★☆   输入文件:hzoi_road2.in   输出文件:hzoi_road2.out   简单对比时间限制:1 s   内存限制:128 MB [题 ...

  9. cogs——2416. [HZOI 2016]公路修建

    2416. [HZOI 2016]公路修建 ★☆   输入文件:hzoi_road.in   输出文件:hzoi_road.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述 ...

随机推荐

  1. 【洛谷 P4072】 [SDOI2016]征途(斜率优化)

    好久没写斜率优化板子都忘了, 硬是交了十几遍.. 推一下柿子就能得到答案为 \[m*\sum x^2-(\sum x)^2\] 后面是个定值,前面简单dp,斜率优化一下就行了. \(f[i][j]=f ...

  2. 爬虫实战--基于requests和beautifulsoup的妹子网图片爬取(福利哦!)

    #coding=utf-8 import requests from bs4 import BeautifulSoup import os all_url = 'http://www.mzitu.co ...

  3. 【译】第五篇 SQL Server代理理解代理错误日志

    本篇文章是SQL Server代理系列的第五篇,详细内容请参考原文. 正如这一系列的前几篇所述,SQL Server代理作业是由一系列的作业步骤组成,每个步骤由一个独立的类型去执行.在第四篇中我们看到 ...

  4. React Native 与 夜神模拟器的绑定

    之前一直用真机去调试, 每回更新一次都需要手动摇晃手机后才能reload JS, OMG,太麻烦了. 后来寻思模拟器网上推荐用Geny...什么的模拟器,但是那个模拟器还需要VBox一起用. 有点麻烦 ...

  5. MySQL源码分析(一)

    近段时间简单看了下Mysql源码相关内容,主要从一个select查询出发,查看了一下整个代码结构.分析总结如下: https://mubu.com/doc/explore/13965

  6. 概述sysfs文件系统【转】

    转自:http://blog.csdn.net/npy_lp/article/details/78933292 内核源码:linux-2.6.38.8.tar.bz2 目标平台:ARM体系结构 sys ...

  7. Python递归 — — 二分查找、斐波那契数列、三级菜单

    一.二分查找 二分查找也称之为折半查找,二分查找要求线性表(存储结构)必须采用顺序存储结构,而且表中元素顺序排列. 二分查找: 1.首先,将表中间位置的元素与被查找元素比较,如果两者相等,查找结束,否 ...

  8. java的loadrunner脚本案例

    /* * LoadRunner Java script. (Build: 670) *  * ״̬£º²¢·¢²âÊÔͨ¹ý * ²âÊÔÈË£ºÕÔС±ò * ÈÕÆÚ£º2013-09-2 ...

  9. Redis安装和客户端cli常见操作

    安装Redis $ wget http://download.redis.io/releases/redis-4.0.6.tar.gz $ tar xzf redis-4.0.6.tar.gz $ c ...

  10. Windows内核分析——内核调试机制的实现(NtCreateDebugObject、DbgkpPostFakeProcessCreateMessages、DbgkpPostFakeThreadMessages分析)

    本文主要分析内核中与调试相关的几个内核函数. 首先是NtCreateDebugObject函数,用于创建一个内核调试对象,分析程序可知,其实只是一层对ObCreateObject的封装,并初始化一些结 ...