[HZOI 2016]我们爱数数
[HZOI 2016]我们爱数数
题目大意:
一张圆桌,每个位置按顺时针从\(1\)到\(n\)编号。有\(n\)个人,编号从\(1\)到\(n\)。如果编号为\(i\)的人坐到了编号为\(i\)的位置或坐到了与编号为\(i\)的位置相邻的位置,这个人就会感到开心,反之这个人会感到沮丧。求有多少种安排坐位的方法,使所有人都入座,并且使得至少\(k\)个人开心。
思路:
用\(f_{i,j,s}\)表示前\(i\)个人,\(j\)个人开心,目前最后两个位置的状态为\(s\)的方案数。
枚举前两个人的位置,就可以化环为链,直接DP就可以求出\(f\)的值。
用\(g_i\)表示\((n-i)!\sum f_{i,j,s}\),\(g_i=\sum {j\choose i}ans_j\)。故\(ans\)可以通过\(g_i\)推出。
源代码:
#include<cstdio>
#include<cctype>
#include<cstring>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1001;
const int mod=1e9+7;
int p1[4]={0,0,1,2},p2[4]={0,1,2,3};
int n,m,fac[N],ifac[N],f[N][N][4],g[N];
bool v[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return ((ret%mod)+mod)%mod;
}
inline int C(const int &n,const int &m) {
if(m>n) return 0;
return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main() {
n=p1[1]=getint(),m=getint();
for(register int i=fac[0]=1;i<=n;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
ifac[n]=inv(fac[n]);
for(register int i=n;i>=1;i--) {
ifac[i-1]=(int64)ifac[i]*i%mod;
}
for(register int i=0;i<4;i++) {
const int &a=p1[i];
v[a]=true;
for(register int j=0;j<4;j++) {
const int &b=p2[j];
if(a&&b&&a==b) continue;
v[b]=true;
memset(f,0,sizeof f);
f[2][(!!a)+(!!b)][(v[3]<<1)|v[2]]=1;
for(register int i=2;i<n;i++) {
for(register int j=0;j<=i;j++) {
for(register int k=0;k<4;k++) {
if(!f[i][j][k]) continue;
(f[i+1][j][k>>1]+=f[i][j][k])%=mod;
(f[i+1][j+1][2+(k>>1)]+=f[i][j][k])%=mod;
if(!(k&1)) (f[i+1][j+1][k>>1]+=f[i][j][k])%=mod;
if(!((k>>1)&1)) (f[i+1][j+1][1]+=f[i][j][k])%=mod;
}
}
}
const int t=((v[1]<<1)+v[n]);
for(register int i=1;i<=n;i++) {
for(register int k=0;k<4;k++) {
if(k&t) continue;
(g[i]+=(int64)f[n][i][k]*fac[n-i]%mod)%=mod;
}
}
v[b]=false;
}
v[a]=false;
}
for(register int i=n;i;i--) {
for(register int j=i+1;j<=n;j++) {
g[i]=((g[i]-(int64)g[j]*C(j,i)%mod)%mod+mod)%mod;
}
}
int ans=0;
for(register int i=m;i<=n;i++) (ans+=g[i])%=mod;
printf("%d\n",ans);
return 0;
}
[HZOI 2016]我们爱数数的更多相关文章
- 「LOJ6482」LJJ爱数数
「LOJ6482」LJJ爱数数 解题思路 : 打表发现两个数 \(a, b\) 合法的充要条件是(我不管,我就是打表过的): \[ a + b = \text{gcd}(a, b)^2 \] 设 \( ...
- P4844 LJJ爱数数
题目 P4844 LJJ爱数数 本想找到莫比乌斯反演水题练练,结果直接用了两个多小时才做完 做法 \(\sum\limits_{a=1}^n\sum\limits_{b=1}^n\sum\limits ...
- P4844 LJJ爱数数 数论
思路: 化简后得到(a+b)c=ab,设g=(a,b),A=a/g,B=b/g,则g(A+B)c=ABg^2,即(A+B)c=ABg 由题目已知条件:(a,b,c)=1,即(g,c)=1,g|(A+B ...
- LJJ爱数数
LJJ爱数数 求\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\epsilon(gcd(i,j,k))(\frac{1}{i}+\frac{1}{j}==\frac{1} ...
- COGS 2416.[HZOI 2016]公路修建 & COGS 2419.[HZOI 2016]公路修建2 题解
大意: [HZOI 2016]公路修建 给定一个有n个点和m-1组边的无向连通图,其中每组边都包含一条一级边和一条二级边(连接的顶点相同),同一组边中的一级边权值一定大于等于二级边,另外给出一个数k( ...
- [补档][HZOI 2016]简单的Treap
[HZOI 2016]简单的Treap 题目 Treap是一种平衡二叉搜索树,除二叉搜索树的基本性质外,Treap还满足一个性质: 每个节点都有一个确定的优先级,且每个节点的优先级都比它的两个儿子小( ...
- [COGS2426][HZOI 2016]几何
[COGS2426][HZOI 2016]几何 题目大意: 给定平面坐标系内\(n\)个整点,求这些整点能构成的正多边形的边数的最大值. 思路: 一个基本结论:平面直角坐标系内能够形成的正多边形一定是 ...
- cogs——2419. [HZOI 2016]公路修建2
2419. [HZOI 2016]公路修建2 ★☆ 输入文件:hzoi_road2.in 输出文件:hzoi_road2.out 简单对比时间限制:1 s 内存限制:128 MB [题 ...
- cogs——2416. [HZOI 2016]公路修建
2416. [HZOI 2016]公路修建 ★☆ 输入文件:hzoi_road.in 输出文件:hzoi_road.out 简单对比时间限制:1 s 内存限制:128 MB [题目描述 ...
随机推荐
- 关于Re模块的一些基础知识(另附一段批量抓代理ip的代码)
1.常用匹配规则 . 表示任意字符[0-9] 用来匹配一个指定的字符类别[^5]表示除了5之外的其他字符,^不在字符串的开头,则表示它本身.* 对于前一个字符重复0到无穷次+ 对于前一个字符重复1到无 ...
- vue--------脚手架vue-cli搭建
今天在看公司的项目的时候,用到的是Vue框架,哈哈,Vue已经火好久了,想必大家也晓得哈,这里宝宝就不瞎渣渣了~ 由于宝宝已经三个月木有看过代码了,所以对新公司的很多的架构和代码都是懵逼的,再加上宝宝 ...
- linux驱动开发:用户空间操作LCD显示简单的图片【转】
转自:http://blog.csdn.net/changliang7731/article/details/53074616 上一章我们简单介绍了LCD的一些基本原理.当然更深奥的还有,比如gamm ...
- MySQL常见错误代码说明
附:MySQL常见错误代码说明 1005:创建表失败 1006:创建数据库失败 1007:数据库已存在,创建数据库失败 1008:数据库不存在,删除数据库失败 1009:不能删除数据库文件导致删除数据 ...
- 修改 firefox accesskey 的快捷键
Chrome中,如果设置了 accesskey 的话,可以通过 Alt + 快捷键 来之直接跳转的.但在Firefox 中,可能是为了防止于菜单的快捷键冲突,所以设置了 Shift + Alt + 快 ...
- springboot + swagger2 生成api文档
直接贴代码: <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-sw ...
- Producer Flow Control 和 vmQueueCursor
ActiveMQ可以开启或关闭生产者流量控制Producer Flow Control ,基本原理是producer 发送一条消息会收到broker返回的ack响应,当磁盘或内存快满的时候broker ...
- ansible安装配置及最佳实践roles
ansible是什么? ansible是一款轻量级配置管理工具,用于远程批量部署.安装.配置.类似的还有puppet.saltstack,各有所长,任君自选. 官方文档:http://docs.ans ...
- redis源码分析——aofrewrite
随着redis的运行,aof会不断膨胀(对于一个key会有多条aof日志),导致通过aof恢复数据时,耗费大量不必要的时间.redis提供的解决方案是aof rewrite.根据db的内容,对于每个k ...
- mysql 创建数据库的时候选择 utf8 bin 和 utf8 ci的区别
utf8 ci 不区分大小写: utf8 bin 区分大小写: