RMQ(求区间最值问题)
学习博客:https://blog.csdn.net/qq_31759205/article/details/75008659
RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干次询问RMQ(i,j),返回数列A中下标在区间[i,j]中的最小/大值。
本文介绍一种比较高效的ST算法解决这个问题。ST(Sparse Table)算法可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。
第一步:预处理
设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)
例如:
A数列为:3 2 4 5 6 8 1 2 9 7
F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。同理 F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;
并且我们可以容易的看出F[i,0]就等于A[i]。(DP的初始值)
我们把F[i,j]分为两段,第一段为 i~i+2^(j-1)-1 第二段为 i+2^(j-1)~i+2^j-1 (长度都为2^(j-1) ) 于是我们得到了状态转移方程:f[i,j]=max(f[i,j-1],f[i+2^(j-1),j-1] )。
2)查询
假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询1,2,3,4,5,我们可以查询1234和2345)。
因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}。
举例说明,要求区间[1,5]的最大值,k = log2(5 - 1 + 1)= 2,即求max(F[1, 2],F[5 - 2 ^ 2 + 1, 2])=max(F[1, 2],F[2, 2]);
看代码:
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=1e5+;
int a[maxn];
int dp[maxn][];
void ST(int n)
{
for(int i=;i<=n;i++) dp[i][]=a[i];//初始化
for(int j=;(<<j)<=n;j++)//2^j
{
for(int i=;i+(<<j)-<=n;i++)//
{
dp[i][j]=max(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
return ;
}
int RMQ(int l,int r)
{
int k=log(r-l+);
return max(dp[l][k],dp[r-(<<k)+][k]);
}
int main()
{
memset(dp,,sizeof(dp));
int n;//长度为n的区间
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
ST(n);
int l,r;//查询的区间
cin>>l>>r;
cout<<RMQ(l,r)<<endl;
return ;
}
RMQ(求区间最值问题)的更多相关文章
- hdu3183 rmq求区间最值的下标
两个月前做的题,以后可以看看,是rmq关于求区间最值的下标 /* hdu3183 终点 给一个整数,可以删除m位,留下的数字形成一个新的整数 rmq 取n-m个数,使形成的数最小 */ #includ ...
- 【模板】 RMQ求区间最值
RMQ RMQ简单来说就是求区间的最大值(最小值) 核心算法:动态规划 RMQ(以下以求最大值为例) F[i,j]表示 从 i 开始 到i+2j -1这个区间中的最大值 状态转移方程 F[i,j]=m ...
- RMQ求区间最值 nlog(n)
转载于:http://blog.csdn.net/xuzengqiang/article/details/7350465 RMQ算法全称为(Range Minimum/Maximum Query)意思 ...
- POJ - 3264 Balanced Lineup (RMQ问题求区间最值)
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...
- xdoj-1324 (区间离散化-线段树求区间最值)
思想 : 1 优化:题意是覆盖点,将区间看成 (l,r)转化为( l-1,r) 覆盖区间 2 核心:dp[i] 覆盖从1到i区间的最小花费 dp[a[i].r]=min (dp[k])+a[i]s; ...
- hdu 5443 (2015长春网赛G题 求区间最值)
求区间最值,数据范围也很小,因为只会线段树,所以套了线段树模板=.= Sample Input3110011 151 2 3 4 551 21 32 43 43 531 999999 141 11 2 ...
- HDU-1754-I Hate It-线段树-求区间最值和单点修改
开学新拉的题目,老题重做,思路会稍微比之前清晰,不过这也算是一点点进步了. 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现 ...
- hdu 1754 I Hate It (线段树求区间最值)
HDU1754 I Hate It Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u D ...
- ST表 求 RMQ(区间最值)
RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...
随机推荐
- 理解Javascript的Prototype
在Javascript中创建对象主要分为三种方式 1. var catA = {name: "Fluffy", color: "White", age: 0}; ...
- C,C++面试题2
面试题1:变量的声明和定义有什么区别为变量分配地址和存储空间的称为定义,不分配地址的称为声明.一个变量可以在多个地方声明,但是只在一个地方定义.加入extern修饰的是变量的声明,说明此变量将在文件以 ...
- MongoDB整理笔记のjava MongoDB分页优化
最近项目在做网站用户数据新访客统计,数据存储在MongoDB中,统计的数据其实也并不是很大,1000W上下,但是公司只配给我4G内存的电脑,让我程序跑起来气喘吁吁...很是疲惫不堪. 最常见的问题莫过 ...
- 【模板模式】 Template Pattern
模板模式 又叫模板方法模式,在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以在不改变算法结构的情冴下,重新定义算法中的某些步骤(这个我觉得很抽象,很抽象) e:学会说“不 ...
- linux权限及目录
[-][rwx][r-x][r--] r:4 - 读 w:2 - 写 x:1 - 执行 1:代表文件类型 2:代表文件所有者的权限 3:代表文件所在组的权限 4:代表其他用户的权限 chgrp:修 ...
- Android Post方式发送信息和获取URL中的图片
需要Internet权限,AndroidManifest.xml <uses-permission android:name="android.permission.INTERNET& ...
- docker : RabbitMQ ElasticSearch
docker 运行RabbitMQ容器 docker run -d -p 5672:5672 -p 15672:15672 --name 命名 CONTAINER ID 放出5672 / 156 ...
- 「HNOI 2013」数列
题目链接 戳我 \(Solution\) 这道题貌似并不难的样子\(QAQ\) 我们发现这个因为有首项的关系所以有点不太好弄.所以我们要将这个首项对答案的影响给去掉. 我们可以构建一个差分数组,我们令 ...
- Django-02路由层
U RL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于客户端发来的某个URL调用哪一段逻辑代 ...
- 2.ECMAScript 5.0
JS的引入方式 内接式 <script type="text/javascript"> </script> 外接式 <!--相当于引入了某个模块--& ...