一 概述
1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
全书的概述,为什么会有这本书?如何学习这本书
2. Introduction to OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
对于OpenCV的简介
二 数据结构和操作
3. Getting to Know OpenCV Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
OpenCV中的数据结构,不仅包括Mat,而且包括algorim等复杂结构
4. Images and Large Array Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
大型复杂的数据结构 97
5. Array Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
数据结构的操作
三 基本函数
6. Drawing and Annotating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
如何标记识别结果
7. Functors in OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
OpenCV中的函数 180
8. Image, Video, and Data Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
如题
四 交叉编译 204
9. Cross-Platform and Native Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
如何交叉编译
五 高级处理 247
10. Filters and Convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
滤波和卷积 294
11. General Image Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
常见的图像变换 332
12. Image Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
图像分析 371
13. Histograms and Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
直方图和模板匹配
六 轮廓
14. Contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
轮廓
七 背景去除
15. Background Subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
背景去除
八 特征点
16. Keypoints and Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
特征点
九 跟踪
17. Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
跟踪 634
十 三维
18. Camera Models and Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
相机模型 688
19. Projection and Three-Dimensional Vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
3维建模
十一 机器学习 766
20. The Basics of Machine Learning in OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
基本机器学习 797
21. StatModel: The Standard Model for Learning in OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . 799
标准机器学习 871
22. Object Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
物体探测
十二 备注 907
23. Future of OpenCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
OpenCV的特性
Afterword 920
A. Planar Subdivisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
B. opencv_contrib. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
C. Calibration Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
- JAVA GUI编程学习笔记目录
2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...
- Redis学习笔记~目录
回到占占推荐博客索引 百度百科 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合). ...
- CentOS学习笔记--目录配置
Linux目录配置 类Linux的目录看上去差不多,为什么? 以下内容节选自l 鸟哥的 Linux 私房菜 -- 基础学习篇目录 第六章.Linux 的文件权限与目录配置 3. Linux目录配 ...
- Linux Shell编程学习笔记——目录(附笔记资源下载)
LinuxShell编程学习笔记目录附笔记资源下载 目录(?)[-] 写在前面 第一部分 Shell基础编程 第二部分 Linux Shell高级编程技巧 资源下载 写在前面 最近花了些时间学习She ...
- Linux~学习笔记目录索引
回到占占推荐博客索引 本篇文章是对自己学习Linux及在它的环境下部署工具的一个总结,以方便自己查阅,也给他人一个帮助,本文章同时会不断的更新,欢迎大家订阅! 本目录包括的内容会包括linux基础命令 ...
- python学习笔记目录
人生苦短,我学python学习笔记目录: week1 python入门week2 python基础week3 python进阶week4 python模块week5 python高阶week6 数据结 ...
- Linux命令学习笔记目录
Linux命令学习笔记目录 最近正在使用,linux,顺便将用到的命令整理了一下. 一. 文件目录操作命令: 0.linux命令学习笔记(0):man 命令 1.linux命令学习笔记(1):ls命令 ...
- 数值优化(Numerical Optimization)学习系列-目录
数值优化(Numerical Optimization)学习系列-目录 置顶 2015年12月27日 19:07:11 下一步 阅读数 12291更多 分类专栏: 数值优化 版权声明:本文为博主原 ...
- Java入门学习路线目录索引
原创 Java入门学习路线目录索引 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/One_ ...
随机推荐
- cx_Oracle在sublime text里运行遇到 ImportError错误解决办法
如果你装完cx_Oracle之后,命令行运行没错,但是在sublime text里运行, 就遇到这个错误: ImportError: dlopen(/Library/Python/2.7/site-p ...
- python--sha256
import hmacimport hashlib def get_hmacsha256(key, message): key_bytes = bytes(key, 'utf-8') message_ ...
- tcpdump linux抓http请求头
sudo tcpdump -i eth0 port 80 -s 1024 -l -A
- python celery rabbitmq--- pypi image from ustc
https://lug.ustc.edu.cn/wiki/mirrors/help/pypi 那么为啥要用celery ?(http://xiaorui.cc/2014/11/16/celery-ra ...
- good blog
https://blog.csdn.net/fgf00/article/details/52793739
- MapReduce小文件优化与分区
一.小文件优化 1.Mapper类 package com.css.combine; import java.io.IOException; import org.apache.hadoop.io.I ...
- Redis在实际项目中的一应用场景
1.在游戏的等级排名,可以将用户信息放入到redis的有序集合中,然后取得相应的排名,不用自己写代码去排序. 2.利用rediss的数据特性的自增,自减属性,可以将项目中的一些列入阅读数,点赞数放入到 ...
- 我不想用for循环
为什么要挑战自己在代码里不写for loop?因为这样可以迫使你去使用比较高级.地道的语法或库.文中以python为例子,讲了不少大家其实在别人的代码里都见过.但自己很少用的语法. 这是一个挑战.我要 ...
- shell_02
if判断: if [$? -eq 0];then echo "xxxxxxxxxxx" else echo "xxxxxxxxxxxxx" fi case判断: ...
- 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...