Spark 源码分析 -- Task
Task是介于DAGScheduler和TaskScheduler中间的接口
在DAGScheduler, 需要把DAG中的每个stage的每个partitions封装成task
最终把taskset提交给TaskScheduler
/**
* A task to execute on a worker node.
*/
private[spark] abstract class Task[T](val stageId: Int) extends Serializable {
def run(attemptId: Long): T //Task的核心函数
def preferredLocations: Seq[TaskLocation] = Nil //Spark关注locality,可以选择该task运行的location
var epoch: Long = -1 // Map output tracker epoch. Will be set by TaskScheduler.
var metrics: Option[TaskMetrics] = None
}
TaskContext
用于记录TaskMetrics和在Task中用到的callback
比如对于HadoopRDD, task完成时需要close input stream
package org.apache.spark
class TaskContext(
val stageId: Int,
val splitId: Int,
val attemptId: Long,
val runningLocally: Boolean = false,
val taskMetrics: TaskMetrics = TaskMetrics.empty() //TaskMetrics封装了task执行时一些指标和数据
) extends Serializable { @transient val onCompleteCallbacks = new ArrayBuffer[() => Unit] // Add a callback function to be executed on task completion. An example use
// is for HadoopRDD to register a callback to close the input stream.
def addOnCompleteCallback(f: () => Unit) {
onCompleteCallbacks += f
} def executeOnCompleteCallbacks() {
onCompleteCallbacks.foreach{_()}
}
}
ResultTask
对应于Result Stage直接产生结果
package org.apache.spark.scheduler
private[spark] class ResultTask[T, U](
stageId: Int,
var rdd: RDD[T],
var func: (TaskContext, Iterator[T]) => U,
var partition: Int,
@transient locs: Seq[TaskLocation],
var outputId: Int)
extends Task[U](stageId) with Externalizable { override def run(attemptId: Long): U = { // 对于resultTask, run就是返回执行的结果, 比如count值
val context = new TaskContext(stageId, partition, attemptId, runningLocally = false)
metrics = Some(context.taskMetrics)
try {
func(context, rdd.iterator(split, context)) // 直接就是对RDD的iterator调用func, 比如count函数
} finally {
context.executeOnCompleteCallbacks()
}
}
}
ShuffleMapTask
对应于ShuffleMap Stage, 产生的结果作为其他stage的输入
package org.apache.spark.scheduler
private[spark] class ShuffleMapTask(
stageId: Int,
var rdd: RDD[_],
var dep: ShuffleDependency[_,_],
var partition: Int,
@transient private var locs: Seq[TaskLocation])
extends Task[MapStatus](stageId)
with Externalizable
with Logging { override def run(attemptId: Long): MapStatus = {
val numOutputSplits = dep.partitioner.numPartitions // 从ShuffleDependency的partitioner中获取到shuffle目标partition的个数 val taskContext = new TaskContext(stageId, partition, attemptId, runningLocally = false)
metrics = Some(taskContext.taskMetrics) val blockManager = SparkEnv.get.blockManager // shuffle需要借助blockManager来完成
var shuffle: ShuffleBlocks = null
var buckets: ShuffleWriterGroup = null try {
// Obtain all the block writers for shuffle blocks.
val ser = SparkEnv.get.serializerManager.get(dep.serializerClass)
shuffle = blockManager.shuffleBlockManager.forShuffle(dep.shuffleId, numOutputSplits, ser) // 创建shuffleBlockManager, 参数是shuffleId和目标partitions数目
buckets = shuffle.acquireWriters(partition) // 生成shuffle目标buckets(对应于partition) // Write the map output to its associated buckets.
for (elem <- rdd.iterator(split, taskContext)) { // 从RDD中取出每个elem数据
val pair = elem.asInstanceOf[Product2[Any, Any]]
val bucketId = dep.partitioner.getPartition(pair._1) // 根据pair的key进行shuffle, 得到目标bucketid
buckets.writers(bucketId).write(pair) // 将pair数据写入bucket
}
// Commit这些buckets到block, 其他的RDD会从通过shuffleid找到这些block, 并读取数据
// Commit the writes. Get the size of each bucket block (total block size).
var totalBytes = 0L
val compressedSizes: Array[Byte] = buckets.writers.map { writer: BlockObjectWriter => // 计算所有buckets写入文件data的size总和(压缩值)
writer.commit()
writer.close()
val size = writer.size()
totalBytes += size
MapOutputTracker.compressSize(size)
} // Update shuffle metrics.
val shuffleMetrics = new ShuffleWriteMetrics
shuffleMetrics.shuffleBytesWritten = totalBytes
metrics.get.shuffleWriteMetrics = Some(shuffleMetrics) return new MapStatus(blockManager.blockManagerId, compressedSizes) // 返回值为MapStatus, 包含blockManagerId和写入的data size, 会被注册到MapOutputTracker
} catch { case e: Exception =>
// If there is an exception from running the task, revert the partial writes
// and throw the exception upstream to Spark.
if (buckets != null) {
buckets.writers.foreach(_.revertPartialWrites())
}
throw e
} finally {
// Release the writers back to the shuffle block manager.
if (shuffle != null && buckets != null) {
shuffle.releaseWriters(buckets)
}
// Execute the callbacks on task completion.
taskContext.executeOnCompleteCallbacks()
}
}
TaskSet
用于封装一个stage的所有的tasks, 以提交给TaskScheduler
package org.apache.spark.scheduler
/**
* A set of tasks submitted together to the low-level TaskScheduler, usually representing
* missing partitions of a particular stage.
*/
private[spark] class TaskSet(
val tasks: Array[Task[_]],
val stageId: Int,
val attempt: Int,
val priority: Int,
val properties: Properties) {
val id: String = stageId + "." + attempt override def toString: String = "TaskSet " + id
}
Spark 源码分析 -- Task的更多相关文章
- Spark 源码分析 -- task实际执行过程
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给Task ...
- Spark源码分析 – 汇总索引
http://jerryshao.me/categories.html#architecture-ref http://blog.csdn.net/pelick/article/details/172 ...
- Spark源码分析 – DAGScheduler
DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Threa ...
- Spark源码分析之八:Task运行(二)
在<Spark源码分析之七:Task运行(一)>一文中,我们详细叙述了Task运行的整体流程,最终Task被传输到Executor上,启动一个对应的TaskRunner线程,并且在线程池中 ...
- Spark源码分析之七:Task运行(一)
在Task调度相关的两篇文章<Spark源码分析之五:Task调度(一)>与<Spark源码分析之六:Task调度(二)>中,我们大致了解了Task调度相关的主要逻辑,并且在T ...
- Spark源码分析之六:Task调度(二)
话说在<Spark源码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这个方法针对接收到的ReviveOffer ...
- Spark源码分析之五:Task调度(一)
在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的 ...
- spark 源码分析之二十一 -- Task的执行流程
引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及St ...
- spark 源码分析之二十二-- Task的内存管理
问题的提出 本篇文章将回答如下问题: 1. spark任务在执行的时候,其内存是如何管理的? 2. 堆内内存的寻址是如何设计的?是如何避免由于JVM的GC的存在引起的内存地址变化的?其内部的内存缓存 ...
随机推荐
- Cocos2d-x 3.4 初体验——安装教程
电脑系统window7 32位 1.首先从官网下载cocos2d-x并解压 http://cn.cocos2d-x.org/download/ 解压后的文件夹中有一个setup.py,双击运行.需要安 ...
- 【转】用python实现简单的文本情感分析
import jieba import numpy as np # 打开词典文件,返回列表 def open_dict(Dict='hahah',path = r'/Users/zhangzhengh ...
- [转]对P,NP和NPC问题的解释
总结: 归约(或别的什么叫法):如果解决了问题A,就能用解决A的方法来解决问题B,那么我们说问题B可以归约为/到问题A,本文记为[B]<[A].其含义就是问题A的求解复杂度比问题B要高,比如说A ...
- 使用python对mysql主从进行监控,并调用钉钉发送报警信息
1.编写python的监控脚本 A.通过获取mysql库中的状态值来判断这个mysql主从状态是否正常 B.进行两个状态值的判断 C.进行调取钉钉机器人,发送消息 2.设置定时任务进行脚本运行 cro ...
- Libgdx window add alpha action change the background actor alpha
现象: Stage中包括一个Window,一个Actor,Window中加入alpha action后,Actor也随之消失:Actor加入alpha action后,不起作用. 解决: 重写draw ...
- C++ 百炼成钢20
题目56: 编写C++程序完成以下功能:(1)定义一个Point类,其属性包括点的坐标,提供计算两点之间距离的方法:(2)定义一个圆形类,其属性包括圆心和半径:(3)创建两个圆形对象,提示用户输入圆心 ...
- 关于Unity的C#基础学习(一)
一.程序包含 1.数据:运行过程中产生的 2.代码:代码指令 数据和代码都是存放到内存中的,代码指令在程序加载的时候放到内存,数据是在程序运行的时候在内存中动态地生成,随时会被回收,要定义变量来存放数 ...
- scanner, BufferedReader, InputStreamReader 区别及特殊字符的输入
1. Scanner是一个可以使用正则表达式来分析基本类型和字符串的简单文本扫描器!也就是控制台应用程序最为常用的文本输入方式!Scanner取得输入数据的依据是空格符:如按下空格键,Tab键或者En ...
- ]flexslider 中文文档 使用教程 参数手册
[原创]flexslider 中文文档 使用教程 参数手册 要改前人用的flexslider功能,但苦于找不到详细的文档教程,折磨了好久……(所以我才说不爱乱用插件) 为了福利下之后也苦于这个问题 ...
- Yii2.0实现微信公众号后台开发
接入微信 Yii2后台配置 1.在app/config/params.php中配置token参数 return [ //微信接入 'wechat' =>[ 'token' => 'your ...