题意:

  给出n个数,判断它是不是素数.

SOL:

  米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板....

  好在不是很长...

Code:

  

/*==========================================================================
# Last modified: 2016-03-21 10:09
# Filename: miller-rabin.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] #define maxn 100000
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
int c[7]={2,3,5,7,11,13};
ll pow(ll a,ll k,ll mod){
ll s=1;
for (;k;a=(a*a)%mod,k>>=1)
if (k&1) s*=a,s%=mod;
return s;
}
bool check(int x,int a){
if (!x%a) return false;
int r=0,s=x-1;
while (!(s&1)) s>>=1,r++;
ll k=pow(a,s,x);
if (k==1) return true;
for (int j=0;j<r;j++,k=k*k%x)
if (k==x-1) return true;
return false;
}
bool miller_rabin(ll x){
FORP(i,0,5) if (x==c[i]) return true;
FORP(i,0,5){
if (!check(x,c[i])) return false;
}
return true;
}
int main(){
int n;
while (scanf("%d",&n)!=EOF){
int ans=0;
FORP(i,1,n) {
ll x; read(x);
if (miller_rabin(x)) ans++;
}
printf("%d\n",ans);
}
}

HDU2138 & 米勒拉宾模板的更多相关文章

  1. C++米勒拉宾算法模板

    //我也忘了从哪找来的板子,不过对于2^63级的数据请考虑使用java内置的米勒拉宾算法. 1 #include <iostream> #include <string> #i ...

  2. Miller_Rabin (米勒-拉宾) 素性测试

    之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...

  3. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  4. HDU 2138 How many prime numbers (判素数,米勒拉宾算法)

    题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...

  5. Miller_Rabin(米勒拉宾)素数测试

    2018-03-12 17:22:48 米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数.卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义 ...

  6. csu 1552(米勒拉宾素数测试+二分图匹配)

    1552: Friends Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 723  Solved: 198[Submit][Status][Web Bo ...

  7. POJ 1811Prime Test(米勒拉宾素数测试)

    直接套用模板,以后接着用 这里还有一个素因子分解的模板 #include <map> #include <set> #include <stack> #includ ...

  8. Miller_Rabin(米勒拉宾)素数测试算法

    首先需要知道两个定理: 1: 费马小定理: 假如p是素数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p). 2:二次探测定理:如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x ...

  9. GCDLCM 【米勒_拉宾素数检验 (判断大素数)】

    GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...

随机推荐

  1. 清空mysql的历史记录

    # vi ~/.mysql_history show tables; show databases; 清空里面的内容,并不用退出当前shell,就可以清除历史命令!!

  2. Yii 同域名的单点登录 SSO实现

    SSO (Single Sign-on) 顾名思义就是几个子项目共用一个登录点. 原理简单来说就是服务端session 共享, 客户端跨域cookies. 实现非常简单,protected/confi ...

  3. httpclient 4.5 get请求

    还是官网靠谱啊 package com.test.httpclient.getpost; import java.io.IOException; import java.util.ArrayList; ...

  4. 在 Android Studio中恢复已经被移除的Module

    假设名为app的Module已经被移除,则他的图标上小手机图标将会消失.此时如下图编辑settings.gradle,然后点击如图按钮Sync Project with Gradle Files即可. ...

  5. String之-如何取得精确byte长度字符串

    背景:公司生产线上出现异常,报的错是记录日志时数据库长度超出,导致异常,经查询发现是由于在计算byte长度时出了问题. 问题代码: operatorLog.setOperAfterData(updat ...

  6. Ubuntu 上安装 MongoDB

    官方安装文档:https://docs.mongodb.com/manual/installation/ 安装环境: mongodb-linux-x86_64-ubuntu1404-3.2.6.tgz ...

  7. error MSB6006: “cmd.exe”已退出,代码为 3。

    VS2012 Qt项目生成提示以下错误: 原因是 generated files 的 debug或release文件夹下的文件不存在.   解决方法:QT5 –>convert project ...

  8. PAT A 1004. Counting Leaves (30)【vector+dfs】

    题目链接:https://www.patest.cn/contests/pat-a-practise/1004 大意:输出按层次输出每层无孩子结点的个数 思路:vector存储结点,dfs遍历 #in ...

  9. C# RFID windows 服务 串口方式

    话说RFID以前很火所以整理一下一年前自己处理的RFID程序,放源码. 一开始觉得他是个很神奇的东西. 包含串口通讯和网络通讯. 由于网络通讯设备太贵,所以国内的设备基本上都是在外置一个比较便宜的模块 ...

  10. Vs2010工具栏显示“开始执行“按钮

    转载来源:http://blog.csdn.net/fromhj/article/details/8795047 前言 在用visual studio 2010的时候,要运行程序,可以使用 1.菜单- ...