题意:

  给出n个数,判断它是不是素数.

SOL:

  米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板....

  好在不是很长...

Code:

  

/*==========================================================================
# Last modified: 2016-03-21 10:09
# Filename: miller-rabin.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] #define maxn 100000
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
int c[7]={2,3,5,7,11,13};
ll pow(ll a,ll k,ll mod){
ll s=1;
for (;k;a=(a*a)%mod,k>>=1)
if (k&1) s*=a,s%=mod;
return s;
}
bool check(int x,int a){
if (!x%a) return false;
int r=0,s=x-1;
while (!(s&1)) s>>=1,r++;
ll k=pow(a,s,x);
if (k==1) return true;
for (int j=0;j<r;j++,k=k*k%x)
if (k==x-1) return true;
return false;
}
bool miller_rabin(ll x){
FORP(i,0,5) if (x==c[i]) return true;
FORP(i,0,5){
if (!check(x,c[i])) return false;
}
return true;
}
int main(){
int n;
while (scanf("%d",&n)!=EOF){
int ans=0;
FORP(i,1,n) {
ll x; read(x);
if (miller_rabin(x)) ans++;
}
printf("%d\n",ans);
}
}

HDU2138 & 米勒拉宾模板的更多相关文章

  1. C++米勒拉宾算法模板

    //我也忘了从哪找来的板子,不过对于2^63级的数据请考虑使用java内置的米勒拉宾算法. 1 #include <iostream> #include <string> #i ...

  2. Miller_Rabin (米勒-拉宾) 素性测试

    之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...

  3. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  4. HDU 2138 How many prime numbers (判素数,米勒拉宾算法)

    题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...

  5. Miller_Rabin(米勒拉宾)素数测试

    2018-03-12 17:22:48 米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数.卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义 ...

  6. csu 1552(米勒拉宾素数测试+二分图匹配)

    1552: Friends Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 723  Solved: 198[Submit][Status][Web Bo ...

  7. POJ 1811Prime Test(米勒拉宾素数测试)

    直接套用模板,以后接着用 这里还有一个素因子分解的模板 #include <map> #include <set> #include <stack> #includ ...

  8. Miller_Rabin(米勒拉宾)素数测试算法

    首先需要知道两个定理: 1: 费马小定理: 假如p是素数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p). 2:二次探测定理:如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x ...

  9. GCDLCM 【米勒_拉宾素数检验 (判断大素数)】

    GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...

随机推荐

  1. Struts2之类型转换器

    一.类型转换器的应用场景 类型转换是OGNL的一部分,默认的八种基本类型.String.Date会使用类型转换,但是更复杂的类型转换就需要我们自定义了(虽然这个东西一般根本用不到),OGNL可以应用在 ...

  2. Pyqt 以OOP方式动画的效果改变自身窗体大小

    代码: # -*- coding:utf8 -*- from PyQt4.QtGui import * from PyQt4.QtCore import * import sys class ani( ...

  3. 【mysql创建用户|删除用户|修改用户权限|常用命令】

    原文链接:http://blog.csdn.net/leili0806/article/details/8573636 1.       CREATE USER 语法: CREATE USER 'us ...

  4. 【JAVA 文件概述】

    一.概述 使用此类的原因: 该类将文件或者文件夹封装成对象.方便对文件与文件夹的属性信息进行操作.File对象作为参数传递给流的构造函数.要求:使用File类的常用方法. windows平台下,目录分 ...

  5. PL/SQL连接配置

    在Oracle安装目录oracle\product\10.2.0\db_2\NETWORK\ADMIN下修改一下三个文件: listener.ora,sqlnet.ora,tnsnames.ora l ...

  6. fis3-postpackager-loader插件说明

    fis3-postpackager-loader 静态资源前端加载器,用来分析页面中使用的和依赖的资源(js或css), 并将这些资源做一定的优化后插入页面中.如把零散的文件合并. 注意 此插件做前端 ...

  7. Windows环境下Oracle数据库的自动备份脚本

    批处理文件(.bat) @echo off echo ================================================ echo  Windows环境下Oracle数据 ...

  8. ImageSwitcher自定意效果+定时切换图片

    Activity实现 1 import android.app.Activity; import android.os.Bundle; import android.view.MotionEvent; ...

  9. hdu 5289 rmp+二分+枚举后界 or单调队列 ****

    好题~~ 给你n个数和k,求有多少的区间使得区间内部任意两个数的差值小于k,输出符合要求的区间个数,枚举后界~~ 又是一种没见过的方法,太弱了/(ㄒoㄒ)/~~ #include <cstdio ...

  10. HTML5——摒弃插件和前端框架的异步文件上传

    之前我从来没有体会到HTML5的便利,直到这次需要一个异步上传的功能功能.一开始我以为文件的一些声明必须为HTML5才管用,后来才知道添加了很多以前没有的标签,并可以直接播放视频,音频等.可以不再使用 ...