[问题2014S12]  解答

先证明一个简单的引理.

引理  设 \(B\) 为 \(n\) 阶半正定 Hermite 阵, \(\alpha\) 为 \(n\) 维复列向量, 若 \(\overline{\alpha}^TB\alpha=0\), 则 \(B\alpha=0\).

引理的证明  由假设存在 \(n\) 阶复方阵 \(C\), 使得 \(B=\overline{C}^TC\), 从而 \[0=\overline{\alpha}^TB\alpha=\overline{\alpha}^T\overline{C}^TC\alpha=\overline{(C\alpha)}^T(C\alpha).\] 因此 \(C\alpha=0\), 从而 \(B\alpha=\overline{C}^TC\alpha=0\).  \(\Box\)

回到原题的证明.

任取 \(AB\) 的特征值 \(\lambda_0\in\mathbb{C}\) 以及对应的特征向量 \(0\neq \alpha\in\mathbb{C}^n\), 即 \[AB\alpha=\lambda_0\alpha.\] 上式两边同时左乘 \(\overline{B\alpha}^T\), 则有 \[\overline{(B\alpha)}^TA(B\alpha)=\lambda_0\overline{\alpha}^TB\alpha.\] 若 \(\overline{\alpha}^TB\alpha=0\), 则由引理知 \(B\alpha=0\), 于是 \(\lambda_0\alpha=AB\alpha=0\), 从而 \(\lambda_0=0\), 结论成立. 若 \(\overline{\alpha}^TB\alpha\neq 0\), 则由 \(B\) 的半正定性知 \(\overline{\alpha}^TB\alpha>0\), 又由 \(A\) 的半正定性知 \(\overline{(B\alpha)}^TA(B\alpha)\geq 0\), 从而 \[\lambda_0=\frac{\overline{(B\alpha)}^TA(B\alpha)}{\overline{\alpha}^TB\alpha}\geq 0,\] 即结论也成立. 进一步, 若 \(A,B\) 都是正定阵, 由上面第二种情况的讨论马上知道 \(\lambda_0>0\).  \(\Box\)

[问题2014S12] 解答的更多相关文章

  1. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  2. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  3. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  4. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  5. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  6. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  7. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  8. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  9. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

随机推荐

  1. Socket客户端/服务端简单实例

    1.client端 package demo.socket; import java.io.BufferedReader;import java.io.IOException;import java. ...

  2. Python字符串,元组、列表、字典

    1.字符串 <string>.strip() 去掉两边空格及去指定字符 <string>.split() 按指定字符分隔字符串为数组 <string>.isdigi ...

  3. 关于java多线程

    package testSynchronized; /** * * 当使用this也就是该文件中的testclass对象作为对象锁时, * 两个线程都使用该对象锁访问该对象的同步代码块, * 是顺序执 ...

  4. 【转】NumPy-快速处理数据

    2.0 简介 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针(为了保存各种类型的对象,只能牺牲空间).这样 ...

  5. socket详解

    <?php /* * * socket主要翻译为套接字 * socket_accept — Accepts a connection on a socket * 接受一个socket链接 * s ...

  6. PHP isset, array_key_exists配合使用, 并解决效率问题

    如果有一个数组, $arr = array('one' => null, 'two' => 1, 'three' => 2); 问题, 如果要判断数组中'one'这个键是否存在..如 ...

  7. Customizing the Editor

    Use the General, Text Editor, Options Dialog Box to customize the appearance and functionality of th ...

  8. 【ionic】Mac IOS下真机调试

    模拟调试不能保证真机一定没问题,所以真机调试是非常必要的一步 IOS设备 启用设备调试 在IOS设备中(Iphone,Ipad)中开始web检测器 设备->safari->高级->w ...

  9. LoadRunner,一个简单的例子

    一.录制脚本,这个就不说了,但是可以说说录完一个简单的脚本之后可以做的一些后续工作 1.设置事务的开始跟结束点(参考他人的http://www.cnblogs.com/fnng/archive/201 ...

  10. OpenERP/Odoo命令行参数

    http://blog.sina.com.cn/s/blog_7cb52fa80102v8h1.html