[问题2014S12] 解答
[问题2014S12] 解答
先证明一个简单的引理.
引理 设 \(B\) 为 \(n\) 阶半正定 Hermite 阵, \(\alpha\) 为 \(n\) 维复列向量, 若 \(\overline{\alpha}^TB\alpha=0\), 则 \(B\alpha=0\).
引理的证明 由假设存在 \(n\) 阶复方阵 \(C\), 使得 \(B=\overline{C}^TC\), 从而 \[0=\overline{\alpha}^TB\alpha=\overline{\alpha}^T\overline{C}^TC\alpha=\overline{(C\alpha)}^T(C\alpha).\] 因此 \(C\alpha=0\), 从而 \(B\alpha=\overline{C}^TC\alpha=0\). \(\Box\)
回到原题的证明.
任取 \(AB\) 的特征值 \(\lambda_0\in\mathbb{C}\) 以及对应的特征向量 \(0\neq \alpha\in\mathbb{C}^n\), 即 \[AB\alpha=\lambda_0\alpha.\] 上式两边同时左乘 \(\overline{B\alpha}^T\), 则有 \[\overline{(B\alpha)}^TA(B\alpha)=\lambda_0\overline{\alpha}^TB\alpha.\] 若 \(\overline{\alpha}^TB\alpha=0\), 则由引理知 \(B\alpha=0\), 于是 \(\lambda_0\alpha=AB\alpha=0\), 从而 \(\lambda_0=0\), 结论成立. 若 \(\overline{\alpha}^TB\alpha\neq 0\), 则由 \(B\) 的半正定性知 \(\overline{\alpha}^TB\alpha>0\), 又由 \(A\) 的半正定性知 \(\overline{(B\alpha)}^TA(B\alpha)\geq 0\), 从而 \[\lambda_0=\frac{\overline{(B\alpha)}^TA(B\alpha)}{\overline{\alpha}^TB\alpha}\geq 0,\] 即结论也成立. 进一步, 若 \(A,B\) 都是正定阵, 由上面第二种情况的讨论马上知道 \(\lambda_0>0\). \(\Box\)
[问题2014S12] 解答的更多相关文章
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
随机推荐
- 您试图从目录中执行CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序
您试图从目录中执行CGI.ISAPI 或其他可执行程序,但该目录不允许执行程序 本人使用WIN2003 INTERNET信息服务(IIS)管理器建立一个网站虚拟目录,结果浏览网页时出现错误,错误提示信 ...
- ios-实现项目在开发、测试、正式环境快速部署
快速部署:简单的来说,就是不用更改开发.测试.正式环境下的 url ,来实现在同一台测试手机快速部署三种项目状态. Bundle ID一样只会出现一个app:不一样会出现三个app: 具体步骤: 一. ...
- Windows 10输入法已禁用IME无法输入中文怎么办
Windows 10输入法已禁用IME无法输入中文怎么办 | 浏览:10453 | 更新:2015-03-01 14:46 | 标签:windows 1 2 3 4 5 分步阅读 Windows10系 ...
- css页面布局基础
1.盒模型属性包括boder.margin.padding.width.height,这些属性可以使用快捷方式表示,顺序为上右下左,值之间用空格隔开. 2.使用clip和overflow属性时,pos ...
- Java实现堆排序(大根堆)
堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键 ...
- tween.js是一款可生成平滑动画效果的js动画库。tween.js允许你以平滑的方式修改元素的属性值。它可以通过设置生成各种类似CSS3的动画效果。
简要教程 tween.js是一款可生成平滑动画效果的js动画库.相关的动画库插件还有:snabbt.js 强大的jQuery动画库插件和Tweene-超级强大的jQuery动画代理插件. tween. ...
- OleContainer控件介绍
OLEContainer 控件的主要属性 1) AllowInPlace property AllowInPlace:Boolean; 这个属性用于决定启动O ...
- 使用Go开发web服务器
原文链接 Go(Golang.org)是在标准库中提供HTTP协议支持的系统语言,通过他可以快速简单的开发一个web服务器.同时,Go语言为开发者提供了很多便利.这本篇博客中我们将列出使用Go开发HT ...
- 史上最全的SpringMVC学习笔记
SpringMVC学习笔记---- 一.SpringMVC基础入门,创建一个HelloWorld程序 1.首先,导入SpringMVC需要的jar包. 2.添加Web.xml配置文件中关于Spring ...
- Matlab中图片保存的5种方法
matlab的绘图和可视化能力是不用多说的,可以说在业内是家喻户晓的. Matlab提供了丰富的绘图函数,比如ez**系类的简易绘图函数,surf.mesh系类的数值绘图函数等几十个.另外其他专业工具 ...