[问题2014S12] 解答
[问题2014S12] 解答
先证明一个简单的引理.
引理 设 \(B\) 为 \(n\) 阶半正定 Hermite 阵, \(\alpha\) 为 \(n\) 维复列向量, 若 \(\overline{\alpha}^TB\alpha=0\), 则 \(B\alpha=0\).
引理的证明 由假设存在 \(n\) 阶复方阵 \(C\), 使得 \(B=\overline{C}^TC\), 从而 \[0=\overline{\alpha}^TB\alpha=\overline{\alpha}^T\overline{C}^TC\alpha=\overline{(C\alpha)}^T(C\alpha).\] 因此 \(C\alpha=0\), 从而 \(B\alpha=\overline{C}^TC\alpha=0\). \(\Box\)
回到原题的证明.
任取 \(AB\) 的特征值 \(\lambda_0\in\mathbb{C}\) 以及对应的特征向量 \(0\neq \alpha\in\mathbb{C}^n\), 即 \[AB\alpha=\lambda_0\alpha.\] 上式两边同时左乘 \(\overline{B\alpha}^T\), 则有 \[\overline{(B\alpha)}^TA(B\alpha)=\lambda_0\overline{\alpha}^TB\alpha.\] 若 \(\overline{\alpha}^TB\alpha=0\), 则由引理知 \(B\alpha=0\), 于是 \(\lambda_0\alpha=AB\alpha=0\), 从而 \(\lambda_0=0\), 结论成立. 若 \(\overline{\alpha}^TB\alpha\neq 0\), 则由 \(B\) 的半正定性知 \(\overline{\alpha}^TB\alpha>0\), 又由 \(A\) 的半正定性知 \(\overline{(B\alpha)}^TA(B\alpha)\geq 0\), 从而 \[\lambda_0=\frac{\overline{(B\alpha)}^TA(B\alpha)}{\overline{\alpha}^TB\alpha}\geq 0,\] 即结论也成立. 进一步, 若 \(A,B\) 都是正定阵, 由上面第二种情况的讨论马上知道 \(\lambda_0>0\). \(\Box\)
[问题2014S12] 解答的更多相关文章
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
随机推荐
- BizTalk开发系列(三十四) Xpath
XPath 是在 XML 文档中查找信息的语言,在BizTalk的开发中应用非常广泛,当然你可以不必先学Xpath再去学BizTalk.但是如果对Xpath有一定了解的 话,在很多应用下会使你的开发更 ...
- Android课程---Activity 的生命周期
activity类处于android.app包中,继承体系如下: 1.java.lang.Object 2.android.content.Context 3.android.app.Applicat ...
- windows内核 内存管理
一.几个基本的概念 1.存储器的金字塔结构 存储器从下之上依次是磁盘/flash.DRAM(内存).L2-cache.L1-cache.寄存器,越在上面的存储器访问速度越快,同时价格也越昂贵,每一级都 ...
- Apache Spark技术实战之5 -- SparkR的安装及使用
欢迎转载,转载请注明出处,徽沪一郎. 概要 根据论坛上的信息,在Sparkrelease计划中,在Spark 1.3中有将SparkR纳入到发行版的可能.本文就提前展示一下如何安装及使用SparkR. ...
- DS实验题 PlayGame Kruskal(UnionFindSet)
题目: 思路: 有两种做法,一种是Prim算法,另外一种则是我所使用的Kruskal算法,Kruskal的算法实现可以参考:最小生成树-Prim算法和Kruskal算法,讲的已经是十分清楚了. 具体算 ...
- python - socket - server
网络上关于socket的介绍文章数不胜数.自己记录下学习的点点滴滴.以供将来复习学习使用. socket中文的翻译是套接字,总感觉词不达意.简单的理解就是ip+port形成的一个管理单元.也是程序中应 ...
- LNMP环境简易安装流程
1.关闭防火墙 [root@CentOS ~]# chkconfig iptables off 2.关闭selinux vi /etc/sysconfig/selinux //将SELINUX=enf ...
- TCP/IP协议 三次握手与四次挥手
一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图: 图1 TCP报文格式 上图中有几个字段需要重点介绍下: (1)序号 ...
- DNS视图以及日志压力测试
1 访问控制列表 配置在/etc/named.conf文件的最顶端 acl innct { 192.168.1.0/24; 127.0.0.0/8; }; ...
- mysqladmin note
hr,fresh meat!! --------------------------------------------------- 15 Practical Usages of Mysqladmi ...