300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案。

合法方案的每个数的质因数的个数的奇偶值异或起来为0。

比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3的个数是奇数为1),3的对应奇偶值为01,于是12*3是完全平方数。

然后异或方程组就是:

a11x1+a12x2+...+a1nxn=0

a21x1+a22x2+...+a2nxn=0

...

an1x1+an2x2+...+annxn=0

aij:第i个质数(2000内有303个质数)在第j个数里是奇数个则为1,否则为0。

xi:第i个数(最多300个数)被选则为1,否则为0。

求出有多少种解即可。(异或方程组高斯消元求秩,然后解就有2^(n-rank)种,减去全为0的解)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define ll long long
#define mod 1000000007
using namespace std;
const int N=;
const int M=;
int prime[N+],cnt;
int n,t,mat[M][M],two[M]={};
ll a[M];
void getPrime(){
for(int i=;i<=N;i++){
if(!prime[i])prime[++cnt]=i;
for(int j=;j<=cnt&&prime[j]<=N/i;j++){
prime[prime[j]*i]=;
if(i%prime[j]==)break;
}
}
}
int Rank(int c[][M]){//异或版的高斯消元求秩
int i=,j=,k,r,u;
while(i<=cnt&&j<=n){
r=i;
while(c[r][j]==&&r<=cnt)r++;
if(c[r][j]){
swap(c[i],c[r]);
for(u=i+;u<=cnt;u++)if(c[u][j])
for(k=i;k<=n;k++)c[u][k]^=c[i][k];
i++;
}
j++;
}
return i;
}
int solve(){
memset(mat,,sizeof mat);
for(int i=;i<=n;i++)
for(int j=;j<=cnt;j++){
ll tmp=a[i];
while(tmp%prime[j]==){
tmp/=prime[j];
mat[j][i]^=;
}
}
int b=n-Rank(mat);//b个自由元
return two[b]-;//减去全为0的解
}
int main() {
getPrime();
for(int i=;i<M;i++)two[i]=two[i-]*%mod;
scanf("%d",&t);
for(int cas=;cas<=t;cas++){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lld",&a[i]);
printf("Case #%d:\n%d\n",cas,solve());
}
return ;
}

  原来是白书上的题(160页)I good vagetable a!

【HDU 5833】Zhu and 772002(异或方程组高斯消元)的更多相关文章

  1. hdu 5833 Zhu and 772002 异或方程组高斯消元

    ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬 ...

  2. 【HDU 5833】Zhu and 772002(异或方程组高斯消元讲解)

    题目大意:给出n个数字a[],将a[]分解为质因子(保证分解所得的质因子不大于2000),任选一个或多个质因子,使其乘积为完全平方数.求其方法数. 学长学姐们比赛时做的,当时我一脸懵逼的不会搞……所以 ...

  3. 3364 Lanterns (异或方程组高斯消元)

    基本思路.首先构造一个n*(m+1)的矩阵,同时标记一个行数row,row从零开始,然后找出每一列第一个非零的数,和第row行互换, 然后对row到n行,异或运算.最终的结果为2^(m-row) #i ...

  4. hdu 5833 Zhu and 772002 ccpc网络赛 高斯消元法

    传送门:hdu 5833 Zhu and 772002 题意:给n个数,每个数的素数因子不大于2000,让你从其中选则大于等于1个数相乘之后的结果为完全平方数 思路: 小于等于2000的素数一共也只有 ...

  5. HDU 5833 Zhu and 772002

    HDU 5833 Zhu and 772002 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  6. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

  7. hdu 5833 Zhu and 772002 高斯消元

    Zhu and 772002 Problem Description Zhu and 772002 are both good at math. One day, Zhu wants to test ...

  8. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

  9. 【HDU 3949】 XOR (线性基,高斯消元)

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. jqueryUI小案例

    实现上面的功能: <%@ page language="java" import="java.util.*" pageEncoding="utf ...

  2. JS原型与原型链终极详解

    一. 普通对象与函数对象  JavaScript 中,万物皆对象!但对象也是有区别的.分为普通对象和函数对象,Object ,Function 是JS自带的函数对象.下面举例说明 function f ...

  3. javascript按回车键触发事件

    <form id="search-form" > <input type="text" onkeypress="getKey();r ...

  4. ipone5 无法安装ipa软件

    iphone5s软件无法安装解决方法一,点击设置 - 通用 - 访问限制,先关闭“安装应用程序”选项,再打开,把后台应用程序刷新也关了,测试. iphone5s软件无法安装解决方法二,点击设置 - 通 ...

  5. wk_01

    Python 学习环境搭建 pyenv是个多版本python管理器,可以同时管理多个python版本共存,如pypy,miniconde等等.我们安装时其会将pyenv安装在当前用户家目录中的.pye ...

  6. zkw费用流+当前弧优化

    zkw费用流+当前弧优化 var o,v:..] of boolean; f,s,d,dis:..] of longint; next,p,c,w:..] of longint; i,j,k,l,y, ...

  7. 快速编写代码zencode

    #是 id .是class $是数字 {}是标签中内容 *个数 ^上一级

  8. Java设计模式之-----工厂模式(简单工厂,抽象工厂)

    一.工厂模式主要是为创建对象提供过渡接口,以便将创建对象的具体过程屏蔽隔离起来,达到提高灵活性的目的. 工厂模式在<Java与模式>中分为三类:1)简单工厂模式(Simple Factor ...

  9. C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 标准省市县数据的公司选择窗口实现

    若全国各地有上千个分公司,加盟店,网点,那就需要一个友善的选择分公司的功能,得有标准的全国省市县的划分数据.这样有了牢靠的基础数据后,才能开发程序得心应手了.当习惯了开发一个公司内部系统时,全国性大公 ...

  10. Oracle On 、Where、Having 区别

    ON .WHERE.HAVING都能通过限制条件筛选数据,但他们的使用及其不同.下面我们来分析三者之间的区别. 1. ON 和WHERE 所有的查询都回产生一个中间临时报表,查询结果就是从返回临时报表 ...