转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/

以下部分代码是根据caffe的python接口,从一次forword中取出param和blob里面的卷积核 和响应的卷积图。

import numpy as np
import matplotlib.pyplot as plt
import os
import caffe
import sys
import pickle
import cv2 caffe_root = '../' deployPrototxt = '/home/chenjie/louyihang/caffe/models/bvlc_reference_caffenet/deploy_louyihang.prototxt'
modelFile = '/home/chenjie/louyihang/caffe/models/bvlc_reference_caffenet/caffenet_carmodel_louyihang_iter_50000.caffemodel'
meanFile = 'python/caffe/imagenet/ilsvrc_2012_mean.npy'
imageListFile = '/home/chenjie/DataSet/CompCars/data/train_test_split/classification/test_model431_label_start0.txt'
imageBasePath = '/home/chenjie/DataSet/CompCars/data/cropped_image'
resultFile = 'PredictResult.txt' #网络初始化
def initilize():
print 'initilize ... '
sys.path.insert(0, caffe_root + 'python')
caffe.set_mode_gpu()
caffe.set_device(4)
net = caffe.Net(deployPrototxt, modelFile,caffe.TEST)
return net #取出网络中的params和net.blobs的中的数据
def getNetDetails(image, net):
# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(caffe_root + meanFile ).mean(1).mean(1)) # mean pixel
transformer.set_raw_scale('data', 255)
# the reference model operates on images in [0,255] range instead of [0,1]
transformer.set_channel_swap('data', (2,1,0))
# the reference model has channels in BGR order instead of RGB
# set net to batch size of 50
net.blobs['data'].reshape(1,3,227,227) net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(image))
out = net.forward() #网络提取conv1的卷积核
filters = net.params['conv1'][0].data
with open('FirstLayerFilter.pickle','wb') as f:
pickle.dump(filters,f)
vis_square(filters.transpose(0, 2, 3, 1))
#conv1的特征图
feat = net.blobs['conv1'].data[0, :36]
with open('FirstLayerOutput.pickle','wb') as f:
pickle.dump(feat,f)
vis_square(feat,padval=1)
pool = net.blobs['pool1'].data[0,:36]
with open('pool1.pickle','wb') as f:
pickle.dump(pool,f)
vis_square(pool,padval=1) # 此处将卷积图和进行显示,
def vis_square(data, padsize=1, padval=0 ):
data -= data.min()
data /= data.max() #让合成图为方
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
#合并卷积图到一个图像中 data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
print data.shape
plt.imshow(data) if __name__ == "__main__":
net = initilize()
testimage = '../data/MyTest/visualize_test.jpg'
getNetDetails(testimage, net)

输入的测试图像



第一层的卷积核和卷积图,可以看到一些明显的边缘轮廓,左侧是相应的卷积核



第一个Pooling层的特征图

第二层卷积特征图



第二层pooling的特征图,可以看到pooling之后,对conv的特征有部分强化,我网络中使用的max-pooling,但是到了pooling2已经出现一些离散的块了,已经有些抽象了,难以看出什么东西

Caffe CNN特征可视化的更多相关文章

  1. 神经网络:caffe特征可视化的代码例子

    caffe特征可视化的代码例子 不少读者看了我前面两篇文章 总结一下用caffe跑图片数据的研究流程 deep learning实践经验总结2--准确率再次提升,到达0.8.再来总结一下 之后.想知道 ...

  2. caffe net 可视化工具,,层特征可视化

    1.只用网络在线结构绘制可视化网络模型 http://ethereon.github.io/netscope/#/editor 将对应的网络输入到里面,然后按shift+enter即可查看对应的网络结 ...

  3. [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks

    概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...

  4. visualization of filters keras 基于Keras的卷积神经网络(CNN)可视化

    https://adeshpande3.github.io/adeshpande3.github.io/ https://blog.csdn.net/weiwei9363/article/detail ...

  5. Caffe FCN:可视化featureMaps和Weights(C++)、获取FCN结果

    为何不使用C++版本FCN获取最后的分割掩模,何必要使用python呢!因此需要获取网络最后层的featureMaps,featureMaps的结果直接对应了segmentation的最终结果,可以直 ...

  6. matlab 批量提取CNN特征

    无类别,图像混合放置: clear close all addpath ./matlab model= './models/bvlc_reference_caffenet/deploy.prototx ...

  7. netscope-支持caffe的在线可视化工具-转载

    Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,地址是here,可以用来可视化Caffe结构里prototxt格式的网络结构. Netscope使用起来也非常简单,打开这 ...

  8. caffe(13) 数据可视化(python接口)配置

    caffe程序是由c++语言写的,本身是不带数据可视化功能的.只能借助其它的库或接口,如opencv, python或matlab.大部分人使用python接口来进行可视化,因为python出了个比较 ...

  9. OpenSuse Caffe CNN库 配置

    参考官方文档:http://caffe.berkeleyvision.org/installation.html 1. 安装CUDA 参考 http://www.cnblogs.com/sunshy/ ...

随机推荐

  1. 免费 PSD 下载: 20个精美的登录和注册表单

    注册表单有许多不同的形状和尺寸,有的只是单个的输入框,有的则需要多个步骤.登录表单的设计将定义网站的性质,因此它应进行针对性的设计.下面的列表提供了20个醒目的登录和注册表单设计为您提供灵感. 您可能 ...

  2. jQuery绑定事件的四种方式

      jQuery提供了多种绑定事件的方式,每种方式各有其特点,明白了它们之间的异同点,有助于我们在写代码的时候进行正确的选择,从而写出优雅而容易维护的代码.下面我们来看下jQuery中绑定事件的方式都 ...

  3. Failed to connect to JobMonApp on port 13491

    今天为了解决别的问题,把/etc/hosts文件里的 127.0.0.1 localhost改成了 127.0.0.1 DSETL ,结果运行作业的时候就报这个错:Failed to connect ...

  4. SharePoint 判断用户是否在字段"人员和组"里面

    两个自己平时写的方法,记录下来,方便以后查找使用: 1.判断用户是否在字段人员和组里面: public static bool IsUserInFiled(int UserID, string Lis ...

  5. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q1-Q3)

    这里我把从网上搜集到的针对Sharepoint 70-576的有关练习进行系统的解析,整理成一个系列, 分期.分批次共享出来,供大家研究. 70-573考试注重的是"知道"相关知识 ...

  6. 获取在线APP的素材图片

    1.打开iTunes,搜索并下载APP 2.打开下载的APP的路径 4.对ipa包进行解压 5.找到app,右键"显示包内容"进行查看 6.结果

  7. webView 显示一段 html 代码

    1.布局文件 <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:and ...

  8. Android NDK编译本地文件以及引用第三方so文件

    LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_LDLIBS :=-llog LOCAL_MODULE := DeviceAPI LO ...

  9. iOS 单例传值遇见问题

    单例模式的意思就是只有一个实例.单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例.这个类称为单例类. 1.单例模式的要点: 显然单例模式的要点有三个:一是某个类只能有一个实例: ...

  10. CSS 行内样式 页内样式 外部样式

    行内标签: <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF ...