这道题是数学题,由题目可知,m个稳定数的取法是Cnm

然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m)

  错排公式:D[i]=(i-1)*(D[i-1]+D[i-2]);

所以根据乘法原理,答案就是Cnm * D(n-m)

接下来就是怎么求组合数的问题了

由于n≤1000000,因此只能用O(n)的算法求组合,这里用乘法逆元(inv[])来辅助求组合数

即 Cnm = n! / ((n-m)! * m!) = fac[n]*inv[n-m]*inv[m]

那么乘法逆元是什么呢?

假设一个数a,且a关于P的乘法逆元为x

那么 ax≡1 (mod P). 当且仅当 a 与 P 互质时x有解

简单的说,就是找一个数x,使得(x*a) mod P = 1

不难得出三者符合 ax+Py=1 (裴蜀定理), y可能是负数

因此我们可以用拓展欧几里得算出x的值,即为乘法逆元(用inv保存)

对于求出inv的过程,我们可以不必每次暴力求拓展欧几里得,可由下列递推式O(n)求出

  inv[i]=(i+1)*inv[i+1]

而D数组只要O(n)推即可,其中D[0]=1, D[1]=0;

这道题让我明白。。组合数可以O(n)求得,了解了乘法逆元是什么,并且了解到世界上有个叫错排公式的神奇东西Orz

 #include<stdio.h>
 #include<algorithm>
 #include<string.h>
 #define LL long long
 using namespace std;
 ;
 ;
 int T,n,m;
 LL f[maxn],inv[maxn],d[maxn];

 inline void read(int &x){
     ;
     ') c=getchar();
     +c-, c=getchar();
 }

 inline LL ex_gcd(LL &x, LL &y, LL a, LL b){
     ){
         x=; y=;
         return a;
     }
     LL res=ex_gcd(x,y,b,a%b);
     LL t=x; x=y;
     y=t-a/b*x;
     return res;
 }

 inline LL calc(LL a, LL b){
     LL x,y;
     if (ex_gcd(x,y,a,b) == 1LL)
         return (x+b)%b;
 }

 int main(){
     read(T);
     f[]=;
     ; i<=maxn; i++) f[i]=f[i-] * (LL)i % MOD;
     inv[]=calc(f[],MOD);
     ; i>=; i--) inv[i]=inv[i+] * (LL)(i+) % MOD;
     d[]=; d[]=; d[]=;
     ; i<=maxn; i++) d[i]=(LL)(i-)*(d[i-]+d[i-]) % MOD;
     while (T--){
         read(n); read(m);
         LL ans=1LL;
         //printf("haha %lld %lld %lld %lld\n", f[n], inv[n-m], inv[m], d[n-m]);
         ans=ans*f[n]*inv[n-m] % MOD;
         ans=ans*inv[m] % MOD;
         ans=ans*d[n-m] % MOD;
         printf("%lld\n", ans);
     }
     ;
 }

bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得的更多相关文章

  1. [BZOJ4517] [Sdoi2016] 排列计数 (数学)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  2. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  3. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  4. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  5. 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)

    传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...

  6. BZOJ4517——[Sdoi2016]排列计数

    求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...

  7. BZOJ4517: [Sdoi2016]排列计数

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  8. bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...

  9. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

随机推荐

  1. Hbase原理、基本概念、基本架构

    来源:http://blog.csdn.net/woshiwanxin102213/article/details/17584043 概述 HBase是一个构建在HDFS上的分布式列存储系统:HBas ...

  2. 【zTree】 zTree使用的 小例子

    使用zTree树不是第一次了  但是 还是翻阅着之前做的 对照着 使用起来比较方便  这里就把小例子列出来   总结一下使用步骤 这样方便下次使用起来方便一点 使用zTree树的步骤: 1.首先  在 ...

  3. spring实例教程

    1.配置好spring mvc发现访问无法匹配,很可能是文件放的位置或者相对目录不对. 2.实例大全:http://www.yiibai.com/spring/spring-collections-l ...

  4. Android Manifest 权限描述大全

    权限 名称 描述 android.permission.ACCESS_CHECKIN_PROPERTIES 访问登记属性 读取或写入登记check-in数据库属性表的权限 android.permis ...

  5. 用Python做自然语言处理必知的八个工具【转载】

    Python以其清晰简洁的语法.易用和可扩展性以及丰富庞大的库深受广大开发者喜爱.其内置的非常强大的机器学习代码库和数学库,使Python理所当然成为自然语言处理的开发利器. 那么使用Python进行 ...

  6. Tomcat 配置 Context

    在 conf/Catalina/localhost/ 下添加 xml配置文件,文件名和站点名一致. 配置文件示例 <?xml version='1.0' encoding='utf-8'?> ...

  7. Hadoop2.0(HDFS2)以及YARN设计的亮点

    YARN总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResouceManager负责对各个Node ...

  8. IDE-Sublime【1】-JsFormat插件格式化缩进问题

    JsFormat插件格式化Javascript代码的快捷键是ctrl+alt+f,发现默认缩进2个空格,但习惯上是4个空格,这里需要手动设置一下. 操作步骤: 1.打开Preferences-> ...

  9. jquery layer弹出层插件

    http://www.51xuediannao.com/js/jquery/jquery_layer/layer.html

  10. linux ubuntu的root密码

    安装完Ubuntu后忽然意识到没有设置root密码,不知道密码自然就无法进入根用户下.到网上搜了一下,原来是这麽回事.Ubuntu的默认root密码是随机的,即每次开机都有一个新的root密码.我们可 ...