这道题是数学题,由题目可知,m个稳定数的取法是Cnm

然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m)

  错排公式:D[i]=(i-1)*(D[i-1]+D[i-2]);

所以根据乘法原理,答案就是Cnm * D(n-m)

接下来就是怎么求组合数的问题了

由于n≤1000000,因此只能用O(n)的算法求组合,这里用乘法逆元(inv[])来辅助求组合数

即 Cnm = n! / ((n-m)! * m!) = fac[n]*inv[n-m]*inv[m]

那么乘法逆元是什么呢?

假设一个数a,且a关于P的乘法逆元为x

那么 ax≡1 (mod P). 当且仅当 a 与 P 互质时x有解

简单的说,就是找一个数x,使得(x*a) mod P = 1

不难得出三者符合 ax+Py=1 (裴蜀定理), y可能是负数

因此我们可以用拓展欧几里得算出x的值,即为乘法逆元(用inv保存)

对于求出inv的过程,我们可以不必每次暴力求拓展欧几里得,可由下列递推式O(n)求出

  inv[i]=(i+1)*inv[i+1]

而D数组只要O(n)推即可,其中D[0]=1, D[1]=0;

这道题让我明白。。组合数可以O(n)求得,了解了乘法逆元是什么,并且了解到世界上有个叫错排公式的神奇东西Orz

 #include<stdio.h>
 #include<algorithm>
 #include<string.h>
 #define LL long long
 using namespace std;
 ;
 ;
 int T,n,m;
 LL f[maxn],inv[maxn],d[maxn];

 inline void read(int &x){
     ;
     ') c=getchar();
     +c-, c=getchar();
 }

 inline LL ex_gcd(LL &x, LL &y, LL a, LL b){
     ){
         x=; y=;
         return a;
     }
     LL res=ex_gcd(x,y,b,a%b);
     LL t=x; x=y;
     y=t-a/b*x;
     return res;
 }

 inline LL calc(LL a, LL b){
     LL x,y;
     if (ex_gcd(x,y,a,b) == 1LL)
         return (x+b)%b;
 }

 int main(){
     read(T);
     f[]=;
     ; i<=maxn; i++) f[i]=f[i-] * (LL)i % MOD;
     inv[]=calc(f[],MOD);
     ; i>=; i--) inv[i]=inv[i+] * (LL)(i+) % MOD;
     d[]=; d[]=; d[]=;
     ; i<=maxn; i++) d[i]=(LL)(i-)*(d[i-]+d[i-]) % MOD;
     while (T--){
         read(n); read(m);
         LL ans=1LL;
         //printf("haha %lld %lld %lld %lld\n", f[n], inv[n-m], inv[m], d[n-m]);
         ans=ans*f[n]*inv[n-m] % MOD;
         ans=ans*inv[m] % MOD;
         ans=ans*d[n-m] % MOD;
         printf("%lld\n", ans);
     }
     ;
 }

bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得的更多相关文章

  1. [BZOJ4517] [Sdoi2016] 排列计数 (数学)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  2. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  3. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  4. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  5. 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)

    传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...

  6. BZOJ4517——[Sdoi2016]排列计数

    求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...

  7. BZOJ4517: [Sdoi2016]排列计数

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  8. bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...

  9. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

随机推荐

  1. codeforces724-B. Batch Sort

    想着想着就忘了有什么问题没解决,坑啊 一开始读错题意了,而且一着急写了两大段差不多的代码,冗余度啊,不说了.. 显然的一点,给的数据是绝对离散的,每行都是1~m的排列 难点一.如何移动能使未排序的数组 ...

  2. json对象的解析

    json对象数据: { "status": "200", "code": "", "msg": &q ...

  3. Loadrunner在场景中添加多个负载机报错:Action.c(38): Error -26488: Could not obtain information about submitted解决方法

    Error -26488: Could not obtain information about submitted file "E:\.jpg": _stat32 rc=-1, ...

  4. WinForm支持拖拽效果

    有一个MSDN客户提问在WinForm中如何实现拖拽效果——比如在WinForm中有一个Button,我要实现的效果是拖拽这个Button到目标位置后生成一个该控件的副本. 其实这个操作主要分成三步走 ...

  5. DSP using MATlAB 示例Example2.10

    上代码 % noise sequence 1 x = [3, 11, 7, 0, -1, 4, 2]; nx = [-3:3]; % given signal x(n) [y,ny] = sigshi ...

  6. 快销品 车销批发管理手持终端PDA系统 打印开单 入库 库存 盘点多功能一体

    手持POS终端PDA移动开单 PDA通过扫描商品条码移动开单,实现便携式办公,伴随式销售,浩瀚技术研发团队开发的一款最新产品,PDA能通过WIFI无线局域网.GPRS互联网直接与主机连接,让公司业务人 ...

  7. yii2.0 的数据的 改

    修改数据 /**     * 根据获取到的数据的id 去编辑对应的数据  controller层     */ //引入对应的model use app\models\About; //定义一个方法 ...

  8. WebApi:路由和Action选择

      译自:http://www.asp.net/web-api/overview/web-api-routing-and-actions/routing-and-action-selection   ...

  9. xampp的Apache无法启动解决方法

    XAMPP Apache 无法启动原因1(缺少VC运行库): 这个就是我遇到的问题原因,下载安装的XAMPP版本是xampp-win32-1.7.7-VC9,而现有的Windows XP系统又没有安装 ...

  10. 【SAP BusinessObjects】WEBI中的动态求和,累加函数的使用

    在WEBI中,提供了这样一个函数: RunningSum([字段名]) 其作用是,将[字段名]这一列进行累加动态求和 对于需要进行计算累加值的列就不必写复杂的SQL,直接使用此函数即可解决.