“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第2章课程讲义下载(PDF)

Summary

  • Vector
    A vector is a collection of numbers in a definite order. If it is a collection of $n$ numbers, it is called a $n$-dimensional vector. For example, $$\vec{A} = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix},\ \vec{B} = \begin{bmatrix}4 & 5 & 6 \end{bmatrix}.$$
  • Addition of vectors
    Two vectors can be added only if they are of the same dimension and the addition is given by $$\vec{A} + \vec{B} = \begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} + \begin{bmatrix}b_1\\ \vdots\\ b_n \end{bmatrix} = \begin{bmatrix}a_1+b_1\\ \vdots\\ a_n + b_n \end{bmatrix}$$
  • Null vector
    A null vector (i.e. zero vector) is where all the components of the vector are zero. For example, $$\begin{bmatrix}0\\ 0\\ 0\\ 0 \end{bmatrix}$$
  • Unit vector
    A unit vector $\vec{U}$ is defined as $$\vec{U} = \begin{bmatrix}u_1\\ \vdots\\ u_n \end{bmatrix}$$ where $$\sqrt{u_1^2 + \cdots + u_{n}^2 = 1}$$
  • Scalar multiplication of vectors
    If $k$ is a scalar and $\vec{A}$ is a $n$-dimensional vector, then $$k\vec{A} = k\begin{bmatrix}a_1\\ \vdots\\ a_n \end{bmatrix} = \begin{bmatrix}ka_1\\ \vdots\\ ka_n \end{bmatrix}$$
  • Linear combination of vectors
    Given $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ as $m$ vectors of same dimension $n$, and if $k_1$, $k_2$, $\cdots$, $k_m$ are scalars, then $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m$$ is a linear combination of the $m$ vectors.
  • Linearly independent vectors
    A set of vectors $\vec{A}_1$, $\vec{A}_2$, $\cdots$, $\vec{A}_m$ are considered to be linearly independent if $$k_1\vec{A}_1 + k_2\vec{A}_2 + \cdots + k_m\vec{A}_m = \vec{0}$$ has only one solution of $k_1 = k_2 = \cdots = k_m =0$.
  • Rank
    From a set of $n$-dimension vectors, the maximum number of linearly independent vectors in the set is called the rank of the set of vectors. Note that the rank of the vectors can never be greater than the vectors dimension.
  • Dot product
    Let $\vec{A} = \begin{bmatrix}a_1, & \cdots, &a_n\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}b_1, & \cdots, &b_n\end{bmatrix}$ be two $n$-dimensional vectors. Then the dot product (i.e. inner product) of the two vectors $\vec{A}$ and $\vec{B}$ is defined as $$\vec{A}\cdot\vec{B} = a_1b_1+\cdots+a_nb_n = \sum_{i=1}^{n}a_ib_i$$
  • Some useful results
    • If a set of vectors contains the null vector, the set of vectors is linearly dependent.
    • If a set of $m$ vectors is linearly independent, then a subset of the $m$ vectors also has to be linearly independent.
    • If a set of vectors is linearly dependent, then at least one vector can be written as a linear combination of others.
    • If the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.

Selected Problems

1. For $$\vec{A} = \begin{bmatrix}2\\9\\-7 \end{bmatrix},\ \vec{B} = \begin{bmatrix}3\\2\\5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$ find $\vec{A} + \vec{B}$ and $2\vec{A} - 3\vec{B} + \vec{C}$.

Solution:
$$\vec{A} + \vec{B} = \begin{bmatrix}2\\9\\-7 \end{bmatrix} + \begin{bmatrix}3\\2\\5 \end{bmatrix} = \begin{bmatrix}5\\ 11\\ -2 \end{bmatrix}$$ $$2\vec{A} - 3\vec{B} + \vec{C} = 2\begin{bmatrix}2\\9\\-7 \end{bmatrix} - 3\begin{bmatrix}3\\2\\5 \end{bmatrix} + \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -4\\ 13\\ -28 \end{bmatrix}$$

2. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?

Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 1\\ 4\\ 25 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 1\\ 1& 2& 4\\ 1& 5& 25 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 4& 24 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 3\\ 0& 1& 6 \end{bmatrix}\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& -3\\ 0& 1& 6 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& -5\\ 0& 0& 1\\ 0& 1& 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.

3. Are $$\vec{A} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?

Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + x_2\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_3\begin{bmatrix} 3\\ 5\\ 7 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 1& 3\\ 1& 2& 5\\ 1& 5& 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 4& 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 1& 1\\ 0& 1& 2\\ 0& 1& 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 1 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{bmatrix} \Rightarrow x_1=x_2=x_3=0$$ Thus they are linearly independent and the rank is 3.

4. Are $$\vec{A} = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix},\ \vec{B} = \begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix},\ \vec{C} = \begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix}$$ linearly independent? What is the rank of the above set of vectors?

Solution:
Suppose $$x_1\vec{A} + x_2\vec{B} + x_3\vec{C} = 0$$ $$\Rightarrow x_1\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix} + x_2\begin{bmatrix} 2\\ 4\\ 10 \end{bmatrix} + x_3\begin{bmatrix} 1.1\\ 2.2\\ 5.5 \end{bmatrix} = 0$$ The coefficient matrix is $$\begin{bmatrix} 1& 2& 1.1\\ 2& 4& 2.2\\ 5& 10& 5.5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1& 2& 1.1\\ 0& 0& 0\\ 0& 0& 0 \end{bmatrix} \Rightarrow x_1 = -2x_2-1.1x_3$$ which exists non-trivial solutions. Thus they are linearly dependent and the rank is 1.

5. Find the dot product of $\vec{A} = \begin{bmatrix}2& 1 & 2.5 &3 \end{bmatrix}$ and $\vec{B} = \begin{bmatrix}-3 & 2 & 1 & 2.5 \end{bmatrix}$.

Solution:
$$\vec{A}\cdot\vec{B} = 2\times(-3) + 1\times2 + 2.5\times1 + 3\times2.5 = 6$$

6. If $\vec{u}$, $\vec{v}$, $\vec{w}$ are three non-zero vector of 2-dimensions, then are they independent?

Solution:
Suppose the three 2-dimensional non-zero vectors are $\vec{u}=\begin{bmatrix}u_1\\ u_2\end{bmatrix}$, $\vec{v}=\begin{bmatrix}v_1\\ v_2\end{bmatrix}$, and $\vec{w}=\begin{bmatrix}w_1\\ w_2\end{bmatrix}$. We have $$x_1\vec{u} + x_2\vec{v} + x_3\vec{w} = 0$$ $$\Rightarrow \begin{cases} x_1u_1+x_2v_1+x_3w_1 = 0 \\ x_1u_2+ x_2v_2 + x_3 w_3 = 0\end{cases}$$ That is, the number of unknown is greater than the number of equations. Thus it has non-trivial solutions for $x_1$, $x_2$, $x_3$, which means they are linearly dependent.
In general cases, if the dimension of a set of vectors is less than the number of vectors in the set, then the set of vectors is linearly dependent.

7. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if $\vec{u}$ and $\vec{v}$ are linearly dependent, there is a scalar $q$ such that $\vec{v} = q\vec{u}$.

Solution:
Suppose we have $$x_1\vec{u} + x_2\vec{v} = 0$$ Note that neither $x_1$ nor $x_2$ is zero, otherwise for instance, $x_1 = 0$ and $x_2\neq0$. Then we have $x_2\vec{v} = 0\Rightarrow x_2 = 0$ or $\vec{v} = 0$. Either of these is contradiction (both of the vectors are non-zero). Thus $x_1\neq0$ and $x_2\neq0$, and we have $$\vec{v} = -{x_1\over x_2}\vec{u}$$ that is, $\vec{v} = q\vec{u}$, where $q=-{x_1\over x_2}$.

8. $\vec{u}$ and $\vec{v}$ are two non-zero vectors of dimension $n$. Prove that if there is a scalar $q$ such that $\vec{v} = q\vec{u}$, then $\vec{u}$ and $\vec{v}$ are linearly dependent.

Solution:
Since $$\vec{v} = q\vec{u} \Rightarrow q\vec{u}-\vec{v} = 0$$ Note that $q\neq0$, otherwise $\vec{v}=0$ which is contradiction.
Thus $\vec{u}$ and $\vec{v}$ are linearly dependent.

9. What is the magnitude of the vector $\vec{V}=\begin{bmatrix}5 & -3 & 2 \end{bmatrix}$?

Solution:
$$|\vec{V}| = \sqrt{5^2+(-3)^2+2^2} = \sqrt{38}$$

10. What is the rank of the set of the vectors $$\begin{bmatrix}2\\3\\7 \end{bmatrix},\ \begin{bmatrix}6\\9\\21 \end{bmatrix},\ \begin{bmatrix}3\\2\\7 \end{bmatrix}.$$
Solution:
$$\begin{bmatrix}2& 6& 3\\ 3& 9& 2\\ 7& 21& 7 \end{bmatrix} \Rightarrow\begin{cases}2R_2-3R_1\\ {1\over7}R_3\end{cases}\begin{bmatrix}2& 6& 3\\ 0& 0& -5\\ 1& 3& 1 \end{bmatrix}$$ $$\Rightarrow\begin{cases}R_1-2R_3\\ -{1\over5}R_2\end{cases}\begin{bmatrix}0& 0& 1\\ 0& 0& 1\\ 1& 3& 1 \end{bmatrix} \Rightarrow\begin{cases}R_1-R_2\\ R_3-R_2 \end{cases}\begin{bmatrix}0& 0& 0\\ 0& 0& 1\\ 1& 3& 0 \end{bmatrix}$$ Thus the rank of this set of vectors is 2.

11. If $\vec{A} = \begin{bmatrix}5 & 2 & 3\end{bmatrix}$ and $\vec{B} = \begin{bmatrix}6 & -7 & 3\end{bmatrix}$, then what is $4\vec{A} + 5\vec{B}$?

Solution:
$$4\vec{A} + 5\vec{B} = 4\begin{bmatrix}5 & 2 & 3\end{bmatrix} + 5\begin{bmatrix}6 & -7 & 3\end{bmatrix}$$ $$=\begin{bmatrix}20+30 & 8-35 & 12+15\end{bmatrix} = \begin{bmatrix}50 & -27 & 27\end{bmatrix}$$

12. What is the dot product of two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$
Solution:
$$\vec{A}\cdot\vec{B} = 3\times11+5\times13+7\times17 = 217$$

13. What is the angle between two vectors $$\begin{cases}\vec{A} = 3i+5j+7k\\ \vec{B}=11i+13j+17k\end{cases}$$

Solution:
$$\cos < \vec{A}, \vec{B} > = {\vec{A}\cdot\vec{B}\over |\vec{A}|\cdot|\vec{B}|}$$ $$={217\over\sqrt{9+25+49}\cdot\sqrt{121+169+289}} = 0.9898774$$ Thus the angle between the two vectors is $\arccos0.9898774$.

A.Kaw矩阵代数初步学习笔记 2. Vectors的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. BASE64 编码和解码

    依赖jar: import org.apache.commons.codec.binary.Base64; BASE64和其他相似的编码算法通常用于转换二进制数据为文本数据,其目的是为了简化存储或传输 ...

  2. DOM与元素节点内联样式

    获取.设置及移除单个内联 CSS 属性 每个 HTML 元素都有个 style 属性,可以用来插入针对该元素的内联 CSS 属性. <div style='background-color:bl ...

  3. SQL基础之数据库快照

    1.认识快照 如名字一样,数据库快照就可以理解为数据库某一时刻的照片,它记录了此时数据库的数据信息.如果要认识快照的本质,那就要了解快照的工作原理.当我们执行t-sql创建快照后,此时就会创建一个或多 ...

  4. idea配置。

    1.project Structure — 修改project(1.name,sdk,level(6-@Override in interface)) 修改modules(点击web,加上source ...

  5. 14-find 查找文件

    find - search for files in a directory hierarchy 查找文件 [语法]: find [选项] [参数] [功能介绍] find命令用来在指定目录下查找文件 ...

  6. Criteria查询之sqlRestriction()的理解

    sqlRestriction()的理解 在Criteria查询中 使用sqlRestriction()方法来提供SQL语法作限定查询,作为where字句 查看官方给的例子,如下 List cats = ...

  7. px和em和rem的区别

    一.px特点: 1. IE无法调整那些使用px作为单位的字体大小: 2. 国外的大部分网站能够调整的原因在于其使用了em或rem作为字体单位: 3. Firefox能够调整px和em,rem,但是96 ...

  8. OAuth in One Picture

    近年来,OAuth在各种开放平台的引领下变得非常流行,上图是OAuth协议认证的全过程,图本身已经比较详细,这里不再赘述. 从上图中可以看出,OAuth协议中有三个角色: User, Consumer ...

  9. jQuery基础--样式篇(1)

    1.jQuery简介:JQuery是继prototype之后又一个优秀的Javascript库.它是轻量级的js库 ,它兼容CSS3,还兼容各种浏览器(IE 6.0+, FF 1.5+, Safari ...

  10. Swift基础--Swift中的异常处理

    Swift中的异常处理 OC中的异常处理:方法的参数要求传入一个error指针地址,方法执行完后,如果有错误,内部会给error赋值 Swift中的异常处理:有throws的方法,就要try起来,然后 ...